We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Biomarker Test Developed for Chronic Fatigue Syndrome

By LabMedica International staff writers
Posted on 16 May 2019
Print article
Image: A nanoelectronics assay: stressed blood cells could be a biomarker for chronic fatigue (Photo courtesy of The Scientist).
Image: A nanoelectronics assay: stressed blood cells could be a biomarker for chronic fatigue (Photo courtesy of The Scientist).
Myalgic encephalomyelitis, or chronic fatigue syndrome (ME/CFS), is a serious condition that may affect up to 2.5 million people in the USA. Symptoms include extreme tiredness, difficulty sleeping, trouble with thinking and remembering things, muscle pain and aches, a recurring sore throat, and tender lymph nodes.

Currently, physicians can only diagnose ME/CFS by examining a person's symptoms and medical history, and by excluding other possible illnesses. This can make the diagnosis process difficult, lengthy, and inaccurate. A new diagnostic test looks at how a person's immune cells react to stress.

Scientists at the Stanford University School of Medicine (Stanford, CA, USA) have developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. The team applied the test to the blood samples of 40 people, 20 of who had ME/CFS and 20 whom did not.

The scientists used a nanoelectronic assay, which measures small changes in energy to assess the health of immune cells and blood plasma, to see how the immune cells and blood plasma process stress. To develop the test, the team took advantage of "advancements in micro/nanofabrication, direct electrical detection of cellular and molecular properties, microfluidics, and artificial intelligence techniques."

The test detects "biomolecular interactions in real time" by using thousands of electrodes to create an electrical current, and by using small chambers that contain blood samples with only immune cells and blood plasma. Inside the small chambers, the immune cells and plasma interact with the electrical current, altering its flow. The scientists used salt to stress the blood samples of some people with ME/CFS and some people without the condition. They then assessed the changes in electrical current. Their test accurately identified all of the people with ME/CFS without misidentifying any of the people who did not have the condition.

The team concluded that they had observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, they developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.

Rahim Esfandyarpour, PhD, a Bioengineer and first author of the study, said, “Using the nanoelectronics assay, we can add controlled doses of many different potentially therapeutic drugs to the patient's blood samples and run the diagnostic test again.” The study was published on April 29, 2019, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Stanford University School of Medicine

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.