We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Paper-Based Technology Enables Malaria Detection

By LabMedica International staff writers
Posted on 21 Mar 2019
Print article
Image: A paper-based microfluidic device enables multiplex LAMP-based detection of malaria in blood (Photo courtesy of University of Glasgow).
Image: A paper-based microfluidic device enables multiplex LAMP-based detection of malaria in blood (Photo courtesy of University of Glasgow).
Populations living in remote rural communities would benefit from rapid, highly sensitive molecular, DNA-based diagnostics to inform the correct and timely treatment of infectious diseases.

Such information is also becoming increasingly relevant in global efforts for disease elimination, where the testing of asymptomatic patients is now seen as being important for the identification of disease reservoirs. However, healthcare workers face practical and logistical problems in the implementation of such tests, which often involve complex instrumentation and centralized laboratories.

An international team of scientists led by the University of Glasgow (Glasgow, UK) developed a test that consists of origami paper-based microfluidic sample preparation using hot wax printing to form channels that either repel or attract blood moving through the structure by capillary force prior to detecting DNA that is specific to malaria. Almost all the cost for the platform in its current form is for the freeze-dried enzymes and reagents that are used to trigger an isothermal amplification event that makes the device sensitive enough to differentiate between disease pathogens, even when they are present at such low abundance that the individual is asymptomatic.

The investigators evaluated the performance of the device in 67 children age six to 12 in primary schools in districts in Uganda. They compared the effectiveness of the device against two standard field-based techniques, rapid lateral flow immunoassay diagnostic testing and light microscopy, and against a laboratory-based, real-time polymerase chain reaction (RT-PCR) assay conducted retrospectively. The test enabled the diagnosis of malaria species in whole blood.

The microfluidic device proved to be highly sensitive and specific, detecting malaria in over 98% of infected individuals in a double-blind, first-in-human study. The analytical sensitivity of the Plasmodium pan assay, which detects several Plasmodium species (including P. falciparum, P. malariae, P. vivax, and P. ovale), was 105 IU/mL after 45 minutes of amplification. The P. falciparum assay detected this species alone with a similar level of sensitivity as the Plasmodium pan assay. The new method was more sensitive than other field-based, benchmark techniques, including optical microscopy and rapid immunoassay diagnostic tests, both performed by an experienced local healthcare team and which detected malaria in 86% and 83% of cases, respectively.

The authors concluded that their results demonstrated that paper-based microfluidic devices can deliver precision diagnostics for malaria in low-resource, underserved settings with a sensitivity that is higher than that of the current malaria diagnostic tests used in the field (such as microscopy and RDTs) and with performance that is similar to that of a laboratory-based real-time PCR test. The study was published on February 19, 2019, in the journal Proceedings of the National Academy of the Sciences.

Related Links:
University of Glasgow

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.