We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Less-Invasive Biosensor Created for Breast Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Dec 2018
Print article
Image: An ink-jet printer layers gold nanoparticle ink constructing a batch of biosensors that could detect a breast cancer protein in the blood (Photo courtesy of Colleen E. Krause, PhD).
Image: An ink-jet printer layers gold nanoparticle ink constructing a batch of biosensors that could detect a breast cancer protein in the blood (Photo courtesy of Colleen E. Krause, PhD).
Breast cancer is the most common form of cancer among women. Usually, diagnosis of the disease involves a mammogram or ultrasound followed by an invasive needle biopsy, where specific biomarkers are identified to determine the type of breast cancer type and develop a treatment plan. Results from a biopsy examination take up to two weeks.

HER2-positive breast cancer is a breast cancer that tests positive for a protein called human epidermal growth factor receptor 2 (HER2), which promotes the growth of cancer cells. In about one of every five breast cancers, the cancer cells have a gene mutation that makes an excess of the HER2 protein. HER2-positive breast cancers tend to be more aggressive than other types of breast cancer.

Bioengineers at the University of Hartford (West Hartford, CT, USA) and their colleagues have devised a new biosensor to diagnose breast cancer less invasively compared to the existing needle biopsy approach. The device combines microfluidic technology and diagnostics, the device was partly built using an inkjet printer. The printed chip, consisting of an array of electrodes, was deposited into a pre-fabricated microfluidic device that regulates fluids to flow in a controlled manner.

During the test process, a patient’s blood sample flows through the microfluidic device and the biosensor chip coated with antibodies, which then captures and immobilizes HER-2 proteins present in the sample. Abnormal levels of HER-2 are considered to be an indicator of a specific type of breast cancer, and its detection is expected to enable treatment strategies. The device is designed to identify the breast cancer biomarker HER-2 in the blood within 15 minutes.

The team believes that demonstrating monitoring of blood HER-2 levels as a potential biomarker of disease progression status during and after therapy. The scientist also believes that the advancement of biosensors could facilitate non-invasive breast cancer testing. They are working towards reducing the new biosensor chip size by using printed circuit boards to construct a portable electrochemical unit.

Seila Selimovic, PhD, from the National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) said, “Less invasive, more accessible, and faster diagnostic tools like this biosensor are essential to improving healthcare. As biosensors continue to progress it is important to keep in mind diagnostic tools are only helpful when accurate. This biosensor works in the clinically relevant range and has one of the lowest reported HER-2 detection limits, so fewer false positives and negatives will occur.”

Related Links:
University of Hartford
National Institute of Biomedical Imaging and Bioengineering

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.