We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Detection Method for Soil-Transmitted Helminth Eggs Optimized

By LabMedica International staff writers
Posted on 31 Oct 2018
Print article
Image: The FECPAKG2 modernizes the traditional microscope-based parasite testing method by replacing it with an Internet connected, image based kit (Photo courtesy of Techion).
Image: The FECPAKG2 modernizes the traditional microscope-based parasite testing method by replacing it with an Internet connected, image based kit (Photo courtesy of Techion).
Soil-transmitted helminths are a group of intestinal parasitic worms that infect humans through contact with infectious stages present in the soil. The main species are the giant roundworm (Ascaris lumbricoides), the whipworm (Trichuris trichiura), and the two hookworms (Necator americanus and Ancylostoma duodenale).

Standard diagnosis of human soil-transmitted helminth (STH) infections is based on the microscopic detection of helminth eggs in stool and supports programmatic decision-making in control programs. However, the current standard diagnostic techniques still show a number of limitations.

An international team of scientists working with those at Ghent University (Merelbeke, Belgium) collected stool samples from school-aged children (aged 5 to 14 years) from Brazil, Ethiopia, Laos and Tanzania and the stool samples were homogenized thoroughly using a spatula. After this, samples were screened for the presence of STH eggs and the fecal egg counts (FEC; expressed as eggs per gram of stool (EPG)) for the different STHs were determined using a single Kato-Katz thick smear.

The team optimized the sedimentation and accumulation steps in the FECPAKG2 procedure (Techion, Mosgiel, New Zealand) for the detection of human helminth eggs using stool samples from naturally infected children. The study evaluated two important steps in the FECPAKG2 SOP. Both the optimal sedimentation time in the FECPAKG2 sedimenter and the accumulation time in the FECPAKG2 cassettes of human STH eggs were determined.

The authors reported that the highest number of eggs were present in the slurry of the sedimenter after overnight sedimentation (Ascaris: 95.7%, Trichuris: 89.8% and hookworm: 94.2% of the eggs). A minimum of 24 minutes was needed to ensure the accumulation of at least 80% of the eggs from all three STH species in the FECPAKG2 cassette (Ascaris: 96.1%; Trichuris: 88.2% and hookworm: 87.6%).

Although more than 80% of the eggs of all three STH species had sedimented after one hour of sedimentation, the highest egg recovery rate was observed after overnight (ON) sedimentation. With exception of hookworms, with a borderline significance, the ON sedimentation time provided significantly higher egg recovery numbers compared to one hour sedimentation. However, recommending ON sedimentation in the FECPAKG2 standard operating procedure (SOP) for detecting STH eggs in human stool has some important practical implications that may not be ideal in a programmatic setting. The protocol established allows for a thorough and objective evaluation of the system as a diagnostic tool that shows potential for implementation in future STH control programs. The study was published on October 15, 2018, in the journal PLOS Neglected Tropical Diseases.

Related Links:
Ghent University
Techion

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.