We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Guangzhou Pluslife Biotech Co., Ltd.

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

‘Lab on a Chip’ Paves Way for Use of Portable Spectrometer in Biomedical Analysis

By LabMedica International staff writers
Posted on 24 Oct 2022
Print article
Image: Light-analyzing ‘lab on a chip’ opens door to widespread use of portable spectrometers (Photo courtesy of Oregon State University)
Image: Light-analyzing ‘lab on a chip’ opens door to widespread use of portable spectrometers (Photo courtesy of Oregon State University)

Scientists have developed a better tool to measure light, contributing to a field known as optical spectrometry and resulting in a powerful, ultra-tiny spectrometer that fits on a microchip and is operated using artificial intelligence (AI). Traditional spectrometers require bulky optical and mechanical components, whereas the new device could fit on the end of a human hair. The research involved a comparatively new class of super-thin materials known as two-dimensional semiconductors, and the upshot is a proof of concept for a spectrometer that could be readily incorporated into a variety of technologies – including biomedical analyzers, among others.

The new research by scientists at Oregon State University (Corvallis, OR, USA) and Aalto University (Espoo, Finland) suggests those components can be replaced with novel semiconductor materials and AI, allowing spectrometers to be dramatically scaled down in size from the current smallest ones, which are about the size of a grape. The device is 100% electrically controllable regarding the colors of light it absorbs, which gives it massive potential for scalability and widespread usability, the researchers say. In medicine, spectrometers are already being tested for their ability to identify subtle changes in human tissue such as the difference between tumors and healthy tissue.

“We’ve demonstrated a way of building spectrometers that are far more miniature than what is typically used today,” said Ethan Minot, a professor of physics in the OSU College of Science. “Spectrometers measure the strength of light at different wavelengths and are super useful in lots of industries and all fields of science for identifying samples and characterizing materials. It’s exciting that our spectrometer opens up possibilities for all sorts of new everyday gadgets, and instruments to do new science as well.”

“Our spectrometer does not require assembling separate optical and mechanical components or array designs to disperse and filter light,” said Hoon Hahn Yoon, Aalto University. “Moreover, it can achieve a high resolution comparable to benchtop systems but in a much smaller package.”

Related Links:
Oregon State University
Aalto University

Gold Supplier
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
New
Auto Liquid Handling & Homogenizer Workstation
LH 96
New
Molecular Diagnostic STI Test
MOLgen PCR-12 STI
New
Gold Supplier
Blood Glucose Reference Analyzer
Nova Primary

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: Equivalence of Genetically Elevated LDL and Lipoprotein(a) on Myocardial Infarction (Photo courtesy of Viborg Regional Hospital)

Familial Hypercholesterolemia Patients With ACD Have Elevated Lipoprotein(a)

Familial hypercholesterolemia (FH) is a genetic disorder characterized by high cholesterol levels, specifically very high levels of low-density lipoprotein (LDL cholesterol), in the blood and early cardiovascular... Read more

Molecular Diagnostics

view channel
Image: A cheap blood test could improve diagnosis of myocarditis (Photo courtesy of Queen Mary University of London)

First-Ever Blood Test Could Detect Deadly Heart Inflammation Within Hours

Myocarditis, or inflammation of the heart muscle, is a difficult condition to diagnose. Symptoms include a temperature, fatigue, chest pain and shortness of breath, which can all be easily mistaken for... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Pathology

view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.