We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Coin-Sized POC Device Detects Measles Virus in Saliva

By LabMedica International staff writers
Posted on 08 Jul 2022
Print article
Image: Novel POC biosensing device can detect measles virions in human saliva (Photo courtesy of Pexels)
Image: Novel POC biosensing device can detect measles virions in human saliva (Photo courtesy of Pexels)

Measles is one of the most infectious airborne viruses worldwide. With a basic reproduction rate of between 12-18, this virus is six times more infectious than the SARS-CoV-2 Alpha variant and similar to the SARS-CoV-2 Omicron variant. Even though a cheap and effective vaccine is available, measles is still common in developing countries. To date, sporadic outbreaks are also reported in developed countries, primarily due to non-vaccinated people. Now, a new point-of-care (POC) biosensing device that is capable of detecting measles virions (MV) in human saliva may help with efforts to control the viral spread.

The device developed by researchers at the Nanoscience Institute of the Italian National Research Council (Rome, Italy) is a surface-acoustic-wave (SAW) based lab-on-a-chip (LOC), smaller than a €1-cent coin, in which SAWs are used both for sensing and fluid recirculation. Experiments have validated the accuracy of the lab-on-a-chip device which may offer a convenient platform for measles diagnosis and serve as a guideline for designing new microfluidic biosensing systems.

“Our technology for the first time demonstrated the synergic operation of different surface-acoustic-wave-based micro devices on the same chip, in the context of lab-on-a-chip biosensing. In this way we have been able to drastically improve the detection limit of our sensors, potentially enabling early point-of-care diagnostic applications,” said senior author Marco Cecchini, PhD, Senior Researcher of the Nanoscience Institute of the Italian National Research Council.

Related Links:
Italian National Research Council

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAb Immunoassay
Chorus TRAb
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.