We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
22 May 2021 - 26 May 2021
Virtual Venue
25 May 2021 - 28 May 2021

Epidermal Patch Simultaneously Monitors Hemodynamic and Metabolic Biomarkers

By LabMedica International staff writers
Posted on 24 Mar 2021
Print article
Image: The first wearable device for simultaneous monitoring of hemodynamic and biochemical biomarkers (Photo courtesy of University of California, San Diego)
Image: The first wearable device for simultaneous monitoring of hemodynamic and biochemical biomarkers (Photo courtesy of University of California, San Diego)
Intertwined with concepts of telehealth, the internet of medical things, and precision medicine, wearable sensors offer features to actively and remotely monitor physiological parameters. Monitoring of single physical parameters, such as the electrocardiogram and blood pressure (BP), as well as biochemical parameters, such as glucose, using non-invasive wearable sensors has been reported.

Heart rate (HR) and BP, two of the most important vital signs, can dynamically and directly reflect the physiological status of the body. These cardiovascular parameters can be affected by fluctuations of various biomarker concentrations originating from activities such as movement, stress or the intake of food, drinks and drugs that can lead to sudden and sometimes lethal alterations.

Nanoengineering experts at the University of California, San Diego (La Jolla, CA, USA) have developed an all-in-one health monitoring device that can reliably measure glucose, lactate, and blood pressure using a soft, stretchy skin patch the size of a postage stamp. It is notoriously difficult to do blood pressure monitoring and metabolite sensing at the same time in the human body due to signal interference when chemical and ultrasound hydrogels intermix.

The blood pressure sensor sits near the center of the device and consists of a set of small ultrasound transducers that are welded to the substrate by a conductive ink. A voltage applied to the transducers causes them to send ultrasound waves into the body and, when they bounce off an artery, the sensor detects the echoes and translates the signals into a blood pressure reading.

The chemical sensors are a pair of electrodes screen-printed on the patch from conductive ink. One electrode can sense either lactate (a biomarker of physical exertion), caffeine, or alcohol, and is printed on the right side of the patch together with the sweat stimulation system, which works by releasing the sweat-inducing drug pilocarpine into the skin for detection of chemical substances in that sweat. The other electrode senses glucose and is printed on the left side of the patch where the interstitial fluid extraction system is located. It works by passing a mild electrical current through the skin to pull out interstitial fluid so glucose can be measured in that fluid.

Glucose, lactate, alcohol, and blood pressure signals were validated against a commercial ACCU-CHEK glucometer (Roche Diagnostics, Indianapolis, IN, USA), blood-lactate meter (NOVA Biomedical, Waltham MA, USA), a BACtrack S80 Pro breathalyzer (San Francisco, CA, USA), and FDA-approved blood pressure cuff, respectively. Caffeine concentrations were estimated by standard addition methodology using collected sweat. An electrochemical impedance analyzer was used to stimulate sweat and extract interstitial fluid simultaneously.

The authors concluded that in human volunteers, the device captured physiological effects of food intake and exercise, in particular the production of glucose after food digestion, the consumption of glucose via glycolysis, and increases in blood pressure and heart rate compensating for oxygen depletion and lactate generation. The study was published on February 15, 2021 in the journal Nature Biomedical Engineering.

Related Links:
University of California, San Diego
Roche Diagnostics
NOVA Biomedical

Gold Supplier
COVID-19 Antigen Test
Rapid COVID-19 Antigen Test
Disposable Sample Saliva Collection Kit
Disposable Sample Saliva Collection Kit
Lateral Flow Test Reader
COVID-19 Antigen Rapid Test
CareStart COVID-19 Antigen Rapid Test

Print article
Mayo Medical Laboratories
BIOHIT  Healthcare OY


Molecular Diagnostics

view channel
Image: Photograph of the novel capsule-based smell test (Photo courtesy of Queen Mary University of London)

A Novel Capsule-Based Smell Test for Diagnosis of Neurological and Respiratory Diseases

To aid in diagnosing diseases where loss of the sense of smell is a symptom, such as in chronic neurological conditions like Parkinson's and Alzheimer's diseases and in acute respiratory infections such... Read more


view channel
Image: The Hamamatsu Photonics Nanozoomer 1 Digital Slide Scanner (Photo courtesy of University of Adelaide)

Genetic Background and Clinicopathologic Features Established for Adult-Onset Nephronophthisis

Nephronophthisis (NPH) is a genetic disorder of the kidneys which mainly affects children. It is classified as a medullary cystic kidney disease. The disorder is inherited in an autosomal recessive fashion... Read more


view channel
Image: DxA 5000 Fit (Photo courtesy of Beckman Coulter)

Beckman Coulter Becomes First Diagnostics Company to Offer Workflow Automation Specifically for Mid-Volume Laboratories

Beckman Coulter (Brea, CA, USA) has announced the global launch of the DxA 5000 Fit, a workflow-automation solution designed to fit into medium-sized labs that run fewer than 5,000 tests a day.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.