We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Fast Antibacterial Susceptibility Testing by Measuring Electron Transfer Metabolism

By LabMedica International staff writers
Posted on 07 Dec 2020
Print article
Image: A recently developed device enables faster testing of antibiotic-resistant bacteria (Photo courtesy of Dr. Seokheun `Sean` Choi)
Image: A recently developed device enables faster testing of antibiotic-resistant bacteria (Photo courtesy of Dr. Seokheun `Sean` Choi)
A recently developed device facilitates bacterial antibiotics susceptibility testing by measuring the effect of these drugs on bacterial electron transfer metabolism.

Since some 2.8 million antibiotic-resistant infections occur annually in the United States with more than 35,000 fatalities, fast and simple antimicrobial susceptibility testing (AST) is urgently required to guide effective antibiotic usages and for monitoring of the antimicrobial resistance rate.

Towards this end, investigators at Binghamton University (NY, USA) established a rapid, quantitative, and high-throughput phenotypic AST by measuring electrons transferred from the interiors of microbial cells to external electrodes. Since the transferred electrons are based on microbial metabolic activities and are inversely proportional to the concentration of potential antibiotics, the changes in electrical outputs can be readily used as a signal to efficiently monitor bacterial growth and antibiotic susceptibility.

For this study, the investigators utilized the common Gram-negative pathogenic bacterium Pseudomonas aeruginosa together with the first-line antibiotic gentamicin. The novel detector had eight sensors printed on a paper surface. The minimum inhibitory concentration (MIC) values generated by the new technique were validated by the gold standard broth microdilution (BMD) method.

Results revealed that the new approach provided quantitative, actionable MIC results within just five hours, as it measured electricity produced by bacterial metabolism instead of the days needed for growth-observation methods.

"To effectively treat the infections, we need to select the right antibiotics with the exact dose for the appropriate duration," said senior author Dr. Seokheun Choi, associate professor of electrical and computer engineering at Binghamton University. "There is a need to develop an antibiotic-susceptibility testing method and offer effective guidelines to treat these infections."

"Although many bacteria are energy-producing, some pathogens do not perform extracellular electron transfer and may not be used directly in our platform. However, various chemical compounds can assist the electron transfer from non-electricity-producing bacteria," said Dr. Choi. "For instance, E. coli cannot transfer electrons from the inside of the cell to the outside, but with the addition of some chemical compounds, they can generate electricity. Now we are working on how to make this technique general to all bacteria cells. We leverage this biochemical event for a new technique to assess the antibiotic effectiveness against bacteria without monitoring the whole bacterial growth. As far as I know, we are the first to demonstrate this technique in a rapid and high-throughput manner by using paper as a substrate."

The new method for determining bacterial antibiotic resistance was published in the November 15, 2020 issue of the journal Biosensors and Bioelectronics.

Related Links:
Binghamton University

Gold Supplier
Benchtop Auto Sample Transfer Processor
Cytology Sample Processor
SDSCP9000 CytoPath Processor
iFuge M5K Combi
Lateral Flow Test Reader

Print article


Clinical Chem.

view channel
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)

Lipoprotein(a) Concentrations Correlate With LDL-C in Diabetic Children

Cardiovascular disease (CVD) is a significant cause of mortality in those with diabetes. Increased apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) have been shown in pediatric patients... Read more


view channel
Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter)

Monocyte Distribution Width Predicts Sepsis in Critically Ill Patients

Sepsis has been reported as a major cause of increased morbidity, length of stay and mortality among patients hospitalized in Intensive Care Units (ICUs) for any cause. The survival of patients developing... Read more


view channel
Image: Procartaplex Immunoassays Kits are based on the principles of a sandwich ELISA, using two highly specific antibodies binding to different epitopes of one protein to quantitate all protein targets simultaneously (Photo courtesy of Thermo Fisher Scientific)

Assay Developed for Patient-Specific Monitoring and Treatment for Ovarian Cancer

Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing.... Read more


view channel
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)

Same Day Test Identifies Secondary Infections in COVID-19 Patients

The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial... Read more


view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more


view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more


view channel

Global HBA1c Laboratory Tests Market Driven by Rise in Diabetic Population

The global HBA1c laboratory tests market is projected to expand at a significant pace over the coming years, driven by an increase in the prevalence of diabetes, rise in prescription rate of HBA1c tests... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.