We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Project Set to Develop Algorithm Able to Accurately Predict and Detect Sepsis

By LabMedica International staff writers
Posted on 18 Nov 2019
Print article
Image: The DxH 900 hematology analyzer (Photo courtesy of Beckman Coulter)
Image: The DxH 900 hematology analyzer (Photo courtesy of Beckman Coulter)
A large research contract has been signed that will enable the development and commercialization of a novel machine-learning-based sepsis detection algorithm.

Sepsis is caused by an inflammatory immune response triggered by an infection. It is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. Common signs and symptoms include fever, increased heart rate, increased breathing rate, and confusion. There may also be symptoms related to a specific infection, such as a cough with pneumonia, or painful urination with a kidney infection. In the very young, old, and people with a weakened immune system, there may be no symptoms of a specific infection and the body temperature may be low or normal, rather than high.

The 1.25 million USD contract (with potential expansion to an additional 6.5 million USD) from the [U.S.] Biomedical Advanced Research and Development Authority (BARDA) provides funds for Beckman Coulter, Inc. (Brea, CA, USA) in collaboration with Dascena, Inc. (Oakland, CA, USA) to develop and commercialize a novel machine-learning-based sepsis detection algorithm. BARDA is a U.S. Department of Health and Human Services office responsible for procurement and development of countermeasures principally against bioterrorism, but also including chemical, nuclear, and radiological threats as well as pandemic influenza and emerging diseases. More broadly if functions as an interface between the U.S. Government and the biomedical industry.

By combining novel laboratory test parameter values with electronic health record information, the objective of this project is the development of a next-generation analytic algorithm able to accurately predict and detect sepsis earlier. The project is set to integrate the novel laboratory parameters generated by the Beckman Coulter DxH 900 hematology analyzer into Dascena’s best-in-class sepsis prediction and detection algorithm.

The Beckman Coulter FDA-cleared Early Sepsis Indicator kit used with the DxH 900 Hematology Analyzer has already been shown to improve diagnosis of sepsis by 43% and, together with clinical signs and symptoms, to improve the ability to rule out sepsis by 63%. The Early Sepsis Indicator measures monocyte distribution width to support prompt clinical decision making. The next-generation analytic algorithm being developed by Dascena will be able to accurately predict and detect sepsis even earlier.

“Sepsis, defined as dysregulated immune response to infection, is a high-priority health concern accounting for the deaths of approximately 250,000 Americans and millions globally each year, and is the most expensive medical condition encountered in most hospitals,” said Dr. Elliott Crouser, professor of pulmonary, critical care, and sleep medicine at the Ohio State University Wexner Medical Center (Columbus, OH, USA), and principal investigator in the clinical trial for Beckman Coulter’s Early Sepsis Indicator. “Delays in the detection and treatment of sepsis during its early phases can contribute significantly to adverse outcomes. The objective of this project will be to deliver earlier and more accurate sepsis detection. The resulting predictive analytic algorithm for sepsis detection is expected to have a major global impact.”

Related Links:
Beckman Coulter, Inc.
Dascena, Inc.
Ohio State University Wexner Medical Center


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.