We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Miniature Technology May Improve Disease Detection

By LabMedica International staff writers
Posted on 10 Jul 2017
Print article
Image: Microfluidic bioassay devices are currently the preferred diagnostic tools. They measure concentration of disease biomarkers within a patient sample, such as blood, which is passed across a surface containing immobilized bioreceptors to capture the biomarker. They can indicate the likelihood of a disease based on presence/absence or based on comparison of the biomarker concentration in the sample relative to the normal body level (Image courtesy of Okinawa Institute of Science and Technology Graduate University).
Image: Microfluidic bioassay devices are currently the preferred diagnostic tools. They measure concentration of disease biomarkers within a patient sample, such as blood, which is passed across a surface containing immobilized bioreceptors to capture the biomarker. They can indicate the likelihood of a disease based on presence/absence or based on comparison of the biomarker concentration in the sample relative to the normal body level (Image courtesy of Okinawa Institute of Science and Technology Graduate University).
Researchers have developed an improved microcontact printing technology to create an optimal disease diagnostic device of bioreceptor arrays for multiplexed microfluidic assays.

Since efficiency of microfluidic bioassay devices relies on how intact and functional the bioreceptors are, immobilizing these bioreceptors without causing damage has proved daunting. Over the last two decades, microcontact printing, which uses a rubber stamp to immobilize the bioreceptors, has been established as a robust method to create a variety of assays with multiple applications. Yet this method also has its flaws, particularly when utilized at the nano scale of proteins and DNA. At this scale, the techniques currently used compromise resolution, whether by deforming the stamp or damaging the bioreceptors, thus yielding data somewhat unmanageable for diagnostics or other applications.

Now researchers at Okinawa Institute of Science and Technology Graduate University (OIST; Okinawa, Japan) have developed a sequence of printing steps that have rectified these issues. For microcontact printing “you need a stamp, an ink, and a surface, and then you create your pattern on your surface. It’s as simple as that,” said paper first author Shivani Sathish, OIST PhD student. The stamp is made of polydimethylsiloxane (a flexible solid similar to the rubber used in everyday stamps), the ink is (3-aminopropyl)triethoxysilane (APTES; a solution composed of silicon- and oxide-containing molecules), and the surface is glass.

After coating the stamp with the ink, the stamp is pressed onto the glass, and then removed after a short incubation. The result is a patterned layer of APTES on the glass—a checkerboard of regions with or without APTES. Next, a microfluidic device (which contains microchannels configured to guide fluid through specified pathways) is sealed over the patterned glass. Finally, the bioreceptors are chemically linked to the APTES regions within the microfluidic channels. The system is now ready for use as a diagnostic assay by delivering a body fluid sample through the microfluidic device attached to the glass.

The APTES solution has convenient chemistry. “Depending on your bioreceptor of interest, you just have to choose the appropriate chemistry to link the molecule with the APTES,” said Ms. Sathish. One stamp can be used to prepare an assay with the ability to immobilize a variety of different bioreceptors for multiplexing. Thus one stamp allows for multiple tests and diagnoses on a single surface. This feature would be advantageous for diagnosing complex diseases such as cancer, which relies on tests that can detect multiple markers to improve the diagnosis.

Ms. Sathish and colleagues first patterned nanoscale features of APTES using ink made of APTES in water, as opposed to harsh chemicals, which eliminated the stamp-swelling issue. Then, they immobilized the bioreceptors onto the surface as the very last step of the process, after patterning the APTES and attaching the microfluidic device. By attaching the bioreceptors as the final step, the researchers avoided exposing them to extreme and damaging conditions. They then demonstrated the efficacy of the final device by running an assay to capture the biomarkers interleukin 6 and human c-reactive protein, which are often elevated during inflammation.

“The final goal is to create a point-of-care device,” said OIST Professor Amy Shen, who headed the study. “If you get your bioreceptors pre-immobilized within microfluidic devices, you can then use them as diagnostic tools as and when required,” Ms. Sathish continued, “[Eventually] instead of having a whole clinical team that processes your sample…we’re hoping that the patients can do it themselves at home.”

The study, by Sathish S et al, was published April 5, 2017, in the journal Analyst.

Related Links:
Okinawa Institute of Science and Technology Graduate University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.