We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Miniature Technology May Improve Disease Detection

By LabMedica International staff writers
Posted on 10 Jul 2017
Researchers have developed an improved microcontact printing technology to create an optimal disease diagnostic device of bioreceptor arrays for multiplexed microfluidic assays.

Since efficiency of microfluidic bioassay devices relies on how intact and functional the bioreceptors are, immobilizing these bioreceptors without causing damage has proved daunting. More...
Over the last two decades, microcontact printing, which uses a rubber stamp to immobilize the bioreceptors, has been established as a robust method to create a variety of assays with multiple applications. Yet this method also has its flaws, particularly when utilized at the nano scale of proteins and DNA. At this scale, the techniques currently used compromise resolution, whether by deforming the stamp or damaging the bioreceptors, thus yielding data somewhat unmanageable for diagnostics or other applications.

Now researchers at Okinawa Institute of Science and Technology Graduate University (OIST; Okinawa, Japan) have developed a sequence of printing steps that have rectified these issues. For microcontact printing “you need a stamp, an ink, and a surface, and then you create your pattern on your surface. It’s as simple as that,” said paper first author Shivani Sathish, OIST PhD student. The stamp is made of polydimethylsiloxane (a flexible solid similar to the rubber used in everyday stamps), the ink is (3-aminopropyl)triethoxysilane (APTES; a solution composed of silicon- and oxide-containing molecules), and the surface is glass.

After coating the stamp with the ink, the stamp is pressed onto the glass, and then removed after a short incubation. The result is a patterned layer of APTES on the glass—a checkerboard of regions with or without APTES. Next, a microfluidic device (which contains microchannels configured to guide fluid through specified pathways) is sealed over the patterned glass. Finally, the bioreceptors are chemically linked to the APTES regions within the microfluidic channels. The system is now ready for use as a diagnostic assay by delivering a body fluid sample through the microfluidic device attached to the glass.

The APTES solution has convenient chemistry. “Depending on your bioreceptor of interest, you just have to choose the appropriate chemistry to link the molecule with the APTES,” said Ms. Sathish. One stamp can be used to prepare an assay with the ability to immobilize a variety of different bioreceptors for multiplexing. Thus one stamp allows for multiple tests and diagnoses on a single surface. This feature would be advantageous for diagnosing complex diseases such as cancer, which relies on tests that can detect multiple markers to improve the diagnosis.

Ms. Sathish and colleagues first patterned nanoscale features of APTES using ink made of APTES in water, as opposed to harsh chemicals, which eliminated the stamp-swelling issue. Then, they immobilized the bioreceptors onto the surface as the very last step of the process, after patterning the APTES and attaching the microfluidic device. By attaching the bioreceptors as the final step, the researchers avoided exposing them to extreme and damaging conditions. They then demonstrated the efficacy of the final device by running an assay to capture the biomarkers interleukin 6 and human c-reactive protein, which are often elevated during inflammation.

“The final goal is to create a point-of-care device,” said OIST Professor Amy Shen, who headed the study. “If you get your bioreceptors pre-immobilized within microfluidic devices, you can then use them as diagnostic tools as and when required,” Ms. Sathish continued, “[Eventually] instead of having a whole clinical team that processes your sample…we’re hoping that the patients can do it themselves at home.”

The study, by Sathish S et al, was published April 5, 2017, in the journal Analyst.

Related Links:
Okinawa Institute of Science and Technology Graduate University


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.