Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Device Automates Collection of Extracellular Vesicles from Biological Fluids

By LabMedica International staff writers
Posted on 15 Mar 2017
A team of Korean cancer researchers has developed an automated system for isolating extracellular vesicles from biological fluids such as cell culture growth medium, urine, or blood.

Extracellular vesicles (EVs) are cell-derived nanoscale vacuoles that can transport nucleic acids and proteins from their cells of origin and show great potential as biomarkers for many diseases, including cancer. More...
Current methods of EV isolation and analysis require time-consuming complicated procedures, including ultracentrifugation, and demand large amounts of sample material.

To simplify the isolation and analysis of EVs, investigators at Ulsan National Institute of Science and Technology developed a rapid, label-free, and highly sensitive method based on a lab-on-a-disc device integrated with two nanofilters. This "Exodisc" device is composed of two independent filtration units (20 nanometers and 600 nanometers in size) within a disk-shaped chip. While being processed for 30 minutes in a tabletop-sized centrifugal microfluidic system, the sample is transferred through the two integrated nanofilters, which enriches EVs within the size range of 20 to 600 nanometers.

The investigators used a quantitative nanoparticle-tracking analysis technique to show that the Exodisc device enabled greater than 95% recovery of EVs from cell culture supernatant. Analysis of mRNA retrieved from EVs revealed that the Exodisc provided more than 100-fold higher concentration of mRNA as compared with the gold-standard ultracentrifugation method. In addition, an on-disc enzyme-linked immunosorbent assay (ELISA) using urinary EVs isolated from bladder cancer patients showed high levels of the marker proteins CD9 and CD81 expression, suggesting that this method may be potentially useful in clinical settings to test urinary EV-based biomarkers for cancer diagnostics.

"Using Exodisc, it is possible to isolate EVs from raw samples within 30 minutes," said senior author Dr. Yoon-Kyoung Cho, professor of biomedical engineering at Ulsan National Institute of Science and Technology. "The process of passing the filter through centrifugal force is automatically carried out, effectively recovering the enriched EVs. We are currently conducting further studies to determine various diseases, including cancer by analyzing the collected nanoparticles. We hope this device can contribute significantly to the advancement of studies related to tumor biology and acceleration of the practical use of EV-based liquid biopsies for personalized medicine in clinical settings."

The Exodisc device was described in detail in the January 9, 2017, online edition of the journal ACS Nano.


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automatic Hematology Analyzer
DH-800 Series
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.