We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




A First: Using Graphene to Detect Cancer Cells

By LabMedica International staff writers
Posted on 27 Dec 2016
Print article
Image: Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman spectroscopy imaging (Photo courtesy of Vikas Berry, University of Illinois at Chicago).
Image: Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman spectroscopy imaging (Photo courtesy of Vikas Berry, University of Illinois at Chicago).
Using Raman spectroscopy in developing a new technology that could improve diagnosis and monitoring of cancer, researchers have, for the first time, successfully used graphene to distinguish cancer from healthy cells. The system could potentially also be used to distinguish between various other cell types or cell activities.

By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago (Chicago, IL, USA) have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a non- or less invasive tool for early cancer diagnosis. “This graphene system is able to detect the level of activity of an interfaced cell,” said Vikas Berry, associate professor at UIC, who led the research along with Ankit Mehta, assistant professor at UIC College of Medicine.

“Graphene is the thinnest known material and is very sensitive to whatever happens on its surface,” added Prof. Berry. The nanomaterial is composed of a single layer of carbon atoms linked in a hexagonal chicken-wire pattern, and all the atoms share a cloud of electrons moving freely about the surface. “The cell’s interface with graphene rearranges the charge distribution in graphene, which modifies the energy of atomic vibration as detected by Raman spectroscopy,” he explained. Raman spectroscopy is routinely used to study graphene. The atomic vibration energy in graphene’s crystal lattice differs depending on whether it’s in contact with a cancer cell or a normal cell because the cancer cell’s hyperactivity leads to a higher negative charge on its surface and the release of more protons. The electric field around the cell pushes away electrons in graphene’s electron cloud, which changes the vibration energy of the carbon atoms. The change in vibration energy can be pinpointed by Raman mapping with a resolution of 300 nanometers allowing characterization of the activity of a single cell.

Recently, Prof. Berry and other coworkers had introduced nanoscale ripples in graphene, causing it to conduct differently in perpendicular directions, useful for electronics. They wrinkled the graphene by draping it over a string of rod-shaped bacteria, then vacuum-shrinking the germs. “We took the earlier work and sort of flipped it over,” said Prof. Berry, “Instead of laying graphene on cells, we laid cells on graphene and studied graphene’s atomic vibrations.”

The new study examined cultured human brain cells, comparing normal astrocytes to their cancerous counterpart, the highly malignant brain tumor glioblastoma multiforme. The technique is now being studied in a mouse model of cancer, with results that are “very promising,” said Prof. Berry. Experiments with patient biopsies would be further down the road.

“Once a patient has brain tumor surgery, we could use this technique to see if the tumor relapses,” said Prof. Berry, “For this, we would need a cell sample we could interface with graphene and look to see if cancer cells are still present.”

The same technique may also work to differentiate between other types of cells or the activity of cells. “We may be able to use it with bacteria to quickly see if the strain is Gram-positive or Gram-negative,” said Prof. Berry, “We may be able to use it to detect sickle cells.”

The study, by Keisham B et al, was published November 14, 2016, in the journal ACS Applied Materials and Interfaces.

Related Links:
University of Illinois at Chicago

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.