Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Programmable DNA Nanosystem Designed for Low Cost Molecular Detection

By LabMedica International staff writers
Posted on 05 Jul 2016
Based in a novel way on the self-assembly forces between DNA complementary strands, researcher have developed programmable nanosystem that has now been applied in a proof-of-principle study on Ebola virus diagnosis potential.

The nanomachine is based on “the magic of how DNA works,” said Erik R. More...
Henderson, professor, Iowa State University (Ames, IO, USA). Prof. Henderson and former student Dr. Divita Mathur developed the system and its first application: genetic detection of Ebola virus. Such a machine would prove valuable in the developing world, where access to diagnostic medical equipment can be rare. This nanotechnology could be fabricated cheaply and deployed easily. In conjunction with a smartphone app, it could be used independently of traditional medical facilities to detect Ebola or other pathogens and diseases.

The trick lies in understanding the rules that govern how DNA works, said Prof. Henderson, “It’s possible to exploit that rule set in a way that creates advantages for medicine and biotechnology.” The researchers harnessed DNA hybridization forces so that the components of the nanomachines, once added to water and then heated and cooled, find each other and assemble correctly without further effort from the individual deploying the machines.

More technically, they harnessed the difference in persistence length (“rigidity”) of single-stranded and double-stranded DNA to elicit a defined physical state change in a self-assembling DNA nanosystem, a platform they call OPTIMuS (Oligo-Propelled Technology for Interrogating Molecular Systems). This inducible state change can be used to interrogate user-programmed molecular interactions within OPTIMuS. In this study they showed how OPTIMuS can be used to detect a soluble target molecule and assess the relative strength of a non-covalent (base stacking) molecular interaction. They employed an embedded photonic system that tests for the presence of the target molecules, where upon detection the photonic system flashes a light, which can be read with a fluorometer.

This sort of technology could be modified to detect other pathogens and other kinds of molecules. Prof. Henderson also envisions development of similar nanomachines that would encapsulate medication for targeted delivery.

The study, by Mathur D & Henderson ER, was published online June 7, 2016, in the journal Scientific Reports.

Related Links:
Iowa State University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.