Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Rapid, Simple, Inexpensive Diagnostic Tests Developed Using DNA

By LabMedica International staff writers
Posted on 12 Oct 2015
A highly selective DNA-based electrochemical sensor that utilizes steric hindrance effects to signal the presence of large macromolecules in a single-step procedure has been developed.

Electrochemical test's sensing principle may be generalized to many different targets, leading to inexpensive devices that could detect dozens of disease markers in less than five minutes. More...
A large macromolecule, such as a protein, when bound to a signaling DNA strand generates steric hindrance effects, which limits the ability of this DNA to hybridize to a surface-attached complementary strand.

Scientists at the University of Montreal (QC, Canada) and their Italian colleagues used DNA molecules to developed rapid, inexpensive medical diagnostic tests that take only a few minutes to perform. Their findings, may aid efforts to build point-of-care devices for quick medical diagnosis of various diseases ranging from cancer, allergies, autoimmune diseases, sexually transmitted diseases (STDs), and many others.

They demonstrated that the efficiency of hybridization of this signaling DNA was inversely correlated with the size of the molecule attached to it, following a semi-logarithmic relationship. Using this steric hindrance hybridization assay in an electrochemical format (eSHHA), they demonstrated the multiplexed, quantitative, one-step detection of various macromolecules in the low nanomolar range, in less than 10 minutes directly in whole blood. The sensing principle was straightforward as the diagnostically relevant protein (green or red), if present, binds to an electro-active DNA strand, and limits the ability of this DNA to hybridize to its complementary strand located on the surface of a gold electrode.

Sahar Mashid, PhD, the first author of the study, said, “While working on the first generation of these DNA-base tests, we realized that proteins, despite their small size are big enough to run into each other and create steric effect (or traffic) at the surface of a sensor, which drastically reduced the signal of our tests. Instead of having to fight this basic repulsion effect, we instead decided to embrace this force and build a novel signaling mechanism, which detects steric effects when a protein marker binds to the DNA test.” The study was published online on September 4, 2015, in the Journal of the American Chemical Society.

Related Links:

University of Montreal



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
Laboratory Software
ArtelWare
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.