We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Next-Generation Whole-Cell Biosensors May Provide New Approach to Diagnostics

By LabMedica International staff writers
Posted on 08 Jun 2015
Print article
Image: Newly designed bacteria with synthetically rewired genetic circuitry act as bactosensors to detect abnormal glucose levels in urine of diabetes patients (Photo courtesy of Chris Bickel and the journal Science).
Image: Newly designed bacteria with synthetically rewired genetic circuitry act as bactosensors to detect abnormal glucose levels in urine of diabetes patients (Photo courtesy of Chris Bickel and the journal Science).
Image: Illustration of principle for using modified, “programmed” bacteria as “bactodetectors” of molecular markers for medical diagnosis (Photo courtesy of J. Bonnet and INSERM).
Image: Illustration of principle for using modified, “programmed” bacteria as “bactodetectors” of molecular markers for medical diagnosis (Photo courtesy of J. Bonnet and INSERM).
Researchers have developed the first programmable bacterial cells for medical diagnosis with improved computing and amplification capacity that could enable earlier clinical detection of various pathological biomarkers in urine or blood.

Several hurdles have limited the application of whole-cell biosensors as analytical clinical tools, primarily their unreliable operation in complex samples and low signal-to-noise ratio. Teams led by Jerome Bonnet (INSERM, CNRS; Montpellier University; Montpellier, France), Franck Molina (SysDiag, CNRS; Montpellier, France), in association with teams led by Eric Renard (Montpellier Regional University Hospital; Montpellier, France) and Drew Endy (Stanford University; Standford, CA, USA), have transformed bacteria into diagnostic agents by inserting the equivalent of a computer program into their DNA. These “bactosensors” with genetically encoded digital amplifying genetic switches can detect clinically relevant molecular markers. They perform signal digitization and amplification, multiplexed signal processing via Boolean logic gates, and data storage.

In vitro diagnostic (IVD) tests are generally noninvasive and simple, but some are complex, requiring sophisticated technologies often available only in central laboratories. Living cells can detect, process, and respond to many signals. Provided with an appropriate “program” they can accomplish diagnostic tasks. To do this, Jerome Bonnet’s team at had the idea to apply concepts from synthetic biology derived from electronics to construct genetic systems to “program” living cells like a computer.

As a central component of modern electronic instruments (including calculators and smartphones), the transistor acts both as a switch and a signal amplifier. In informatics, several transistors are combined to construct “logic gates” that respond to different signal combinations according to a predetermined logic. For example, a dual input “AND” logic gate will produce a signal only if both of two input signals are present. At Standford University Jerome Bonnet had previously invented a genetic transistor named the “transcriptor.” Inserting transcriptors into bacteria can transform them into calculators, where electrical signals used in electronics are replaced by molecular signals that control gene expression. It is thus possible to reprogram the cells by implanting simple genetic “programs” as sensor modules that enable cells to respond to specific combinations of molecules.

The team now applied this new technology to detect disease “signals” in clinical samples. The transcriptor amplification ability was used to detect biomarkers even at very small amounts, and the test results were successfully stored in the bacterial DNA for several months. Thus, the semi-synthetic cells acquired the ability to perform different functions based on the presence of several markers, opening the way to more accurate diagnostic tests that rely on detection of molecular “signatures” using different biomarkers.

As a proof-of-concept clinical experiment, the transcriptor was connected to a bacterial system that responds to glucose and successfully detected the abnormal levels of glucose in urine of diabetic patients.

“We have standardized our method, and confirmed the robustness of our synthetic bacterial systems in clinical samples. We have also developed a rapid technique for connecting the transcriptor to new detection systems. All this should make it easier to reuse our system,” said first author Alexis Courbet, “Our work is presently focused on the engineering of artificial genetic systems that can be modified on demand to detect different molecular disease markers,” said Jerome Bonnet.

The study, by Courbet A, et al., was published May 27, 2015, in the journal Science Translational Medicine.

Related Links:

INSERM 


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.