We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Rare Cell Isolation Technique Improved

By LabMedica International staff writers
Posted on 06 Nov 2012
An innovative concept has been reported for the separation of rare cells, such as prostate cancer cells or circulating tumor cells, using microfluidics. More...


The technique allows an entire blood draw to be processed, in continuous manner, in a shorter period of time, and does not rely on antibodies, which is important because not all cancer cells express antigens.

Scientists at the University of Cincinnati ( OH, USA), used inertial microfluidics to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size versus other biomarkers. The advantage of inertial microfluidics in cell separation is that it can be done easily and without cumbersome equipment. This type of work is leading to an entirely new generation of testing capabilities that particularly lend themselves to direct use in the field and in physicians' offices in just about any country and any economic setting. Another area in which this device could be useful is in working with cell cultures.

The device is essentially a clear, plastic, flexible square that is relatively small, at about 12.7 mm across. The device contains four outlet ports that separate the blood into different streams, allowing the collection of outputs containing dilute plasma, red blood cells, and white blood cells. This quick, low-cost way of running a diagnostic test could potentially be used in a resource-limited setting. Ian Papautsky, PhD, an associate professor at the College of Engineering and Applied Science (Cincinnati, OH, USA), said, "If you have a mixture of multiple cells where some cells are small and other cells are big, we could separate these cell populations very easily. Anytime you need to separate based on size, we can do it using inertial microfluidics."

Prof. Papautsky explained, “There are a lot of clinical diagnostic tests that are based on blood. One of the most common tests that are done in a hospital is the complete blood count (CBC). Through this test, a wide range of conditions like anemia, malaria or leukemia are diagnosed. In all of these diagnostic tests, blood must be separated into its components, and that's what this device does. So, instead of using a big centrifuge to do it, we can do it with this little device." The microfluidic device allows for a diagnosis in less time in a much easier fashion. The study was reported at the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS) held October 28 to November 1, 2012, in Okinawa (Japan).

Related Links:

University of Cincinnati
College of Engineering and Applied Science
microTAS


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Serological Pipet Controller
PIPETBOY GENIUS
New
See-Saw Rocking Shaker
SH-200D-S-L
New
Plasmodium Test
Plasmodium DNA Real Time PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: Mimix Reference Standards are cell-line derived to maintain genomic complexity and mimic patient material across molecular diagnostics workflows (Photo courtesy of Revvity)

New Cancer Testing Standards to Improve Diagnostic Accuracy for Oncology Labs

Accurate diagnosis, including the identification of genomic markers, is essential for determining the most effective cancer treatments for patients. To ensure this, laboratories require reliable reference... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.