We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computer Trained to Evaluate Breast Cancer

By LabMedica International staff writers
Posted on 29 Nov 2011
Computers can be trained to analyze breast cancer microscopic images and were more accurate than those conducted by humans.

A machine-learning-based method called Computational Pathologist, or C-Path, automatically analyzes images of cancerous tissues and predicts patient survival.

Scientists at Stanford University (Stanford, CA, USA) used existing tissue samples taken from patients whose prognosis was known. More...
For training, the computers pored over images, measuring various tumor structures and trying to use those structures to predict patient survival. By comparing results against the known data, the computers adapted their models to better predict survival and gradually figured out what features of the cancers matter most and which matter less in predicting survival.

C-Path, in fact, assessed 6,642 cellular factors. Once trained using one group of patients, C-Path was asked to evaluate tissues of cancer patients it had not checked before and the result was compared against known data. The C-Path system was applied to microscopic images from two independent cohorts of breast cancer patients. Ultimately, C-Path yielded results that were a statistically significant improvement over human-based evaluation. The computers identified structural features in cancers that matter as much or more than those that pathologists have focused on traditionally. In fact, they discovered that the characteristics of the cancer cells and the surrounding cells, known as the stroma, were both important in predicting patient survival.

Machine learning may reduce the variability in results as C-Path could improve the accuracy of prognoses for all breast cancer victims. It could, likewise, improve the screening of precancerous cells that could help many women avoid cancer altogether. It might even be applied to predict the effectiveness of various forms of treatment and drug therapies. In the widest sense, having computers that can evaluate cancers will bring world-class pathology to underserved areas where trained professionals have traditionally been scarce, improving the prognosis and treatment of breast cancer for millions in developing areas of the world.

Andrew Beck, MD, a doctoral candidate in biomedical informatics and the paper's first author, said, "Pathologists have been trained to look at and evaluate specific cellular structures of known clinical importance, which get incorporated into the grade. However, tumors contain innumerable additional features, whose clinical significance has not previously been evaluated." The study was published November 9, 2011, in the journal Science Translational Medicine.

Related Links:

Stanford University



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.