Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

By LabMedica International staff writers
Posted on 31 May 2025

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes. More...

However, due to the intricate structure of cancer genomes, standard analysis tools, including those developed specifically for long-read sequencing data, often fall short. This can lead to false positives and unreliable data interpretations, ultimately undermining our understanding of how tumors evolve, respond to treatments, and affect patient diagnosis and management. To overcome this issue, researchers have developed a machine learning algorithm capable of identifying cancer-specific structural variations and copy number changes in long-read DNA sequencing data.

The algorithm, named SAVANA, was developed by researchers at the European Bioinformatics Institute (EMBL-EBI, Barcelona, Spain) and Genomics England's R&D laboratory (London, UK), in collaboration with clinical partners. SAVANA utilizes machine learning techniques to precisely identify structural variants—such as insertions, deletions, duplications, and rearrangements—along with the resulting copy number changes in cancer genomes using long-read sequencing data. Because cancer genomes are complex, traditional analysis tools often generate false positives, leading to inaccurate clinical interpretations of tumor biology. SAVANA significantly reduces these errors. The algorithm, described in Nature Methods, was tested on 99 human tumor samples, and its rapid processing and strong error-correction capabilities make it ideal for clinical applications. Recently, the method was applied to study osteosarcoma, a rare and aggressive bone cancer, where it helped uncover novel genomic rearrangements, shedding light on the mechanisms behind osteosarcoma's progression.

The team also compared SAVANA’s results from long-read data with data generated using Illumina sequencing, applying the standard whole-genome sequencing pipeline used in clinical settings. The results were highly consistent across both technologies, showing that SAVANA matches current clinical standards while revealing additional cancer-related alterations. SAVANA provides fast and reliable genomic analysis, which enhances the interpretation of clinical samples and improves cancer diagnosis and treatment strategies. This initiative represents the first global effort to incorporate whole-genome sequencing into routine clinical care. By integrating genomics into everyday clinical practice, the goal is to improve diagnostic precision and support personalized treatment plans for cancer patients. However, to achieve the full benefits of clinical genomics, accurate genomic data interpretation is essential, and this depends on specialized analytical tools. As part of its efforts to explore the clinical potential of long-read sequencing technology for faster and earlier cancer diagnosis, Genomics England has incorporated SAVANA into its research.

“Using SAVANA will ensure clinicians receive accurate and reliable genomic data, enabling them to confidently integrate advanced genomic sequencing methods such as long-read sequencing into routine patient care,” said Greg Elgar, Director of Sequencing R&D at Genomics England.

Related Links:
EMBL-EBI
Genomics England


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Rapid AKI Test
Acute Kidney Injury (AKI) Array (4-plex)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.