We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

By LabMedica International staff writers
Posted on 19 Nov 2024
Print article
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women with dense breast tissue. Photoacoustic imaging, which uses a combination of light and sound to produce detailed images of breast tissue, presents a potential solution. However, recent research has identified a major issue: skin tone bias.

Researchers from Johns Hopkins University (Baltimore, MD, USA) conducted a study to assess how skin tone affects the visibility of breast cancer targets in photoacoustic imaging. Published in Biophotonics Discovery, the research evaluated three image reconstruction methods: fast Fourier transform (FFT)-based reconstruction, delay-and-sum (DAS) beamforming, and short-lag spatial coherence (SLSC) beamforming. The study involved simulations with various wavelengths (757, 800, and 1064 nm), target sizes (ranging from 0.5 to 3 mm), and skin tones (from very light to dark).

The findings revealed that traditional methods like FFT and DAS struggled to visualize small targets in darker skin tones, particularly at 757 and 800 nm wavelengths. Targets smaller than 3 mm were especially difficult to detect, with lower signal-to-noise ratios (SNR) and contrast-to-noise ratios (gCNR). In contrast, the 1064 nm wavelength showed notable improvements, particularly when paired with SLSC beamforming, enhancing the visibility of targets across all skin tones and providing clearer images with higher SNR and gCNR values.

The study findings offer promising implications for the future of breast cancer detection. By addressing the skin tone bias, photoacoustic imaging could become a more accurate and equitable tool for early diagnosis, benefiting women of all skin tones. The study highlights the importance of considering skin tone when designing next-generation imaging systems, ensuring more inclusive healthcare solutions.

“This work was motivated by a previously poor understanding of photoacoustic imaging performance under combined variations of small target sizes and darker skin tones,” said senior and corresponding author Muyinatu Bell. “Our results are enlightening, as we now have a better understanding of advanced photoacoustic imaging techniques and associated wavelengths necessary to detect small targets.”

New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.