We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Electronic Diagnostic Model Predicts Acute Interstitial Nephritis in Patients

By LabMedica International staff writers
Posted on 15 Nov 2024

Acute interstitial nephritis (AIN) is a frequent cause of acute kidney injury (AKI), characterized by inflammation and swelling of certain kidney tissues. More...

It is typically associated with the use of medications such as steroids, proton pump inhibitors, and antibiotics. Studies show that AKI, which involves a sudden decline in kidney function, affects about 20% of hospitalized patients. One of the key challenges in managing AKI is distinguishing AIN from other causes of kidney injury. This is complicated by the fact that over 90% of AIN patients show no obvious symptoms, and common diagnostic methods, including urine eosinophil counts, urine microscopy, and imaging tests, have poor accuracy. Misdiagnosing AIN can result in the premature discontinuation of essential treatments like immune checkpoint inhibitors or antibiotics, potentially leading to permanent kidney damage if the condition is not promptly identified. Given the difficulty of diagnosing AIN, a kidney biopsy is often required, though it is an invasive procedure with its own risks. To address this challenge, researchers have developed a diagnostic model using lab tests from electronic medical records, which could significantly improve early detection of AIN in patients.

In the study, researchers from Johns Hopkins Medicine (Baltimore, MD, USA) and Yale University (New Haven, CT, USA) developed a diagnostic model to predict AIN in patients using a machine learning technique called least absolute shrinkage and selection operator (LASSO). The laboratory tests used in the model included serum creatinine, blood urea nitrogen (BUN), urine protein levels, and urine specific gravity (the density of urine compared to water). The study involved two patient cohorts, both of which had previously undergone kidney biopsies at Johns Hopkins Hospital (JHH) or Yale University. The JHH cohort consisted of 1,454 patients who had a native kidney biopsy between January 2019 and December 2022, while the Yale cohort included 528 patients scheduled for clinical kidney biopsy between July 2020 and June 2023. Patients who did not have a serum creatinine value within a year before their biopsy, were undergoing kidney allograft biopsies, or had known vasculitis or lupus nephritis were excluded from the study.

A total of 1,982 patients were analyzed, with 22% diagnosed with AIN. The study found that patients with AIN were more likely to be hospitalized and had higher serum creatinine levels and a higher blood urea nitrogen-to-creatinine ratio. The diagnostic model improved the accuracy of AIN diagnosis to 77%. However, there were differences in the prevalence of AIN between the two cohorts. After adjusting for prevalence at the individual centers, the model's calibration improved significantly, leading to more accurate diagnoses. The findings, published in the Journal of the American Society of Nephrology, suggest that this diagnostic model could assist clinicians in determining whether a kidney biopsy is necessary in patients with AKI and help guide treatment decisions for AIN. The formula for predicting AIN is available on MDCalc.


New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Rapid Test
Afinion CRP
New
Urine Drug Test
Instant-view® Phencyclidine Urine Drug Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: A biomarker discovery pipeline has shown promise as a noninvasive method of diagnosing CRC (Photo courtesy of NCI Center for Cancer Research)

Machine Learning Tool Enables Noninvasive Diagnosis and Monitoring of Colorectal Cancer

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States when considering both genders. Colonoscopy remains the gold standard for CRC diagnosis, but it is invasive,... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.