We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Based Breast Cancer Test Uses Routine Digital Histopathology Images for Risk Stratification

By LabMedica International staff writers
Posted on 15 Oct 2024
Print article
Image: The AI-based image analysis and decision support platform identifies breast cancer patients having a high risk of relapse (Photo courtesy of Stratipath AG)
Image: The AI-based image analysis and decision support platform identifies breast cancer patients having a high risk of relapse (Photo courtesy of Stratipath AG)
Image: The AI-based image analysis and decision support platform identifies breast cancer patients having a high risk of relapse (Photo courtesy of Stratipath AG)
Image: The AI-based image analysis and decision support platform identifies breast cancer patients having a high risk of relapse (Photo courtesy of Stratipath AG)

Histological tumor grade serves as a strong prognostic indicator in breast cancer. Invasive breast cancer is graded through a morphological assessment following the Nottingham Histologic Grade (NHG), categorizing tumors into low-, intermediate-, or high-risk groups, specifically NHG 1, 2, or 3. Currently, however, more than half of breast cancer patients fall into the intermediate risk category (NHG 2), which provides limited clinical guidance for treatment decisions. This situation has led to the challenge of over- and undertreatment in early breast cancer cases, with many clinical choices relying on costly molecular assays that are often inaccessible to a large number of patients. Now, a novel deep learning solution facilitates the detection and classification of intermediate-risk tumors into low- and high-risk categories based on grade-related tumor morphology.

Stratipath Breast, developed by Stratipath AG (Stockholm, Sweden), is the first regulatory-compliant solution in the EU for breast cancer risk stratification that utilizes artificial intelligence (AI) and routine H&E histopathology images. This AI-driven solution processes digitized hematoxylin and eosin-stained histopathology images of breast cancer tissues, enabling the identification of patients at increased risk for disease progression and thus providing decision support for clinicians assessing breast cancer. Unlike traditional molecular tests, AI-based risk profiling offers faster result turnaround, generates new insights at the diagnostic stage, and significantly reduces dependence on expensive molecular testing. Consequently, Stratipath Breast enhances accessibility and benefits for a larger patient population affected by breast cancer.

The AI-driven image analysis and decision support platform is designed to reduce the chances of breast cancer recurrence by improving the identification of high-risk patients. Stratipath’s AI model has been trained using existing data from past patients collected across various hospitals in Sweden. This dataset includes scanned images and patient outcomes, enabling the AI model to learn how to identify individuals at high risk of relapse, flagging them for the pathologist's attention. The system evaluates risk-related morphological patterns locally within the images and synthesizes this information over the analyzed tissue area to determine the tumor's classification as high- or low-risk. Results generated by Stratipath Breast offer prognostic insights and are meant to complement other clinical and pathological data in decision-making processes. Additionally, Stratipath Breast ensures an efficient workflow through integration with leading digital pathology solutions, and it can function independently via the Stratipath customer web portal.

A recent study that included over 2,700 patients from two distinct sites successfully validated the prognostic effectiveness of Stratipath Breast. In the clinically significant subgroup of ER+/HER2- patients, a Hazard Ratio (HR) of 2.76 was noted between high- and low-risk categories in a multivariable Cox PH model adjusted for clinical factors. Furthermore, among NHG2/ER+/HER2- patients classified as intermediate risk, an HR of 2.20 was recorded between high- and low-risk groups. The study also assessed the underlying risk score as a foundation for five-level multi-group risk stratification, revealing a marginal HR of 9.33 between the reference group and the highest risk category, which represented 20% of the population.

Related Links:
Stratipath AG

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.