We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Molecular Test Detects More Cervical Cancer Cases

By LabMedica International staff writers
Posted on 06 Jun 2024
Print article
Image: Microscopic view of the HPV human papillomavirus that causes cervical cancer (credit: Adobe Stock Images)
Image: Microscopic view of the HPV human papillomavirus that causes cervical cancer (credit: Adobe Stock Images)

Cervical cancer screening is crucial for early detection and prevention. Many countries have comprehensive screening programs that begin with testing for various types of human papillomavirus (HPV), the virus responsible for cervical cancer. The traditional screening process involves a vaginal examination called a colposcopy if cell changes are detected. During a colposcopy, the gynecologist examines the cervix with a microscope and may take a biopsy if necessary. The biopsy, a surgical procedure, can result in negative pregnancy outcomes such as premature delivery. When an HPV-positive result is obtained, it is followed by cytological analysis, which involves examining gynecological cell samples under a microscope, relying on human interpretation. Researchers have now developed a simpler and more effective screening method for cervical cancer than the current one.

The WID-qCIN test, a new molecular test developed by researchers at Karolinska Institutet (Stockholm, Sweden) and the University of Innsbruck (Innsbruck, Austria), has the potential to replace cytological analysis. This test can automatically analyze epigenetic changes in cells, which are changes that influence which genes are active and which are not. Such changes can be affected by factors like the environment, lifestyle, and aging, and can raise the risk of cancer and other diseases. In a study involving more than 28,000 women over 30 who were screened in Stockholm between January and March 2017, the researchers used the WID-qCIN test along with a test for two high-risk HPV types (HPV 16 and 18) to analyze 2,377 HPV-positive samples. This method successfully detected 100% of all invasive cervical cancers and 93% of all serious precancerous lesions within a year of sampling.

Moreover, the new test, combined with the HPV 16/18 test, predicted 69% of all cancers and precancerous lesions up to six years after the sample was taken. In comparison, the current screening method predicts only 18%. In today's screening program, when cell changes are detected, a woman undergoes a vaginal examination (colposcopy), during which the gynecologist uses a microscope to look at the cervix and may take a biopsy if needed. This biopsy can lead to negative pregnancy outcomes, including premature delivery. The results of the recent study indicate that implementing the WID-qCIN test could reduce the number of colposcopy examinations by 40%. The study was published in Nature Medicine on June 4, 2024.

“By integrating the WID-qCIN test into our screening programs, we would be able to identify more cancer cases while reducing the need for invasive procedures,” said Joakim Dillner, Professor at Karolinska Institutet.

“With its simplicity and objective assessment, the WID-qCIN test can improve the effectiveness of these programs and support the global strategy to eliminate cervical cancer,” added Martin Widschwendter, Professor at the University of Innsbruck.

Related Links:
Karolinska Institutet
University of Innsbruck

Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Metabolic Disorder Test
LIAISON Bone & Mineral Diagnostic Solution
New
Plasmodium Parasites Test
Plasmodium Genotyping Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: The ChatGPT-like AI model can diagnose cancer, guide treatment choice, predict survival across multiple cancer types (Photo courtesy of 123RF)

AI Tool Diagnoses Cancer, Guides Treatment and Predicts Survival Across Multiple Cancer Types

Current artificial intelligence (AI) models are typically specialized, designed for specific tasks like detecting cancer or predicting tumor genetics, and are limited to a few cancer types.... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.