We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




World’s Largest Image-Based AI Models for Digital Pathology and Oncology to Fight Cancer

By LabMedica International staff writers
Posted on 19 Sep 2023
Print article
Image: Paige’s advanced digital pathology and AI software transform the way pathologists work and labs operate (Photo courtesy of Paige)
Image: Paige’s advanced digital pathology and AI software transform the way pathologists work and labs operate (Photo courtesy of Paige)

Two major companies have come together with the goal of revolutionizing cancer diagnosis and treatment by creating the world's most extensive image-based AI models in the fields of digital pathology and oncology.

Paige (New York, NY, USA) and Microsoft (Redmond, WA, USA) are collaborating to build the world's biggest AI model based on images. Paige has already built the first Large Foundation Model, which incorporates over a billion images from half a million pathology slides covering various types of cancer. Together with Microsoft, Paige is working on a new AI model that is far larger than any other image-based AI model currently in existence. Designed with billions of parameters, this model aims to capture the subtle complexities of cancer. This model is expected to serve as the cornerstone for future clinical tools and computational biomarkers that could reshape the fields of oncology and pathology.

For the next stage of this development, Paige plans to add up to four million digitized microscope slides from its enormous, petabyte-scale collection of clinical data, covering multiple cancer types. To make this happen, Paige will leverage Microsoft's advanced supercomputing capabilities to train this colossal AI model. Once ready, the technology is set to be deployed to hospitals and labs worldwide via Microsoft's Azure platform.

“Paige has been at the forefront of innovation since its inception, and by combining Microsoft’s expertise and enormous compute power with Paige’s deep expertise in AI, technology, and digital pathology, we strongly believe we will significantly advance the state-of-the-art in cancer imaging. Through the development of this model, we will help improve the lives of the millions of people who are affected by cancer every day,” said Razik Yousfi, SVP of Technology at Paige.

“Paige technology already goes beyond what is humanly possible today and helps physicians deliver better cancer care with AI support. By realizing the potential of generative AI at unprecedented scale, the Paige model collaboration with Microsoft is a milestone in the history of oncology. It opens a window into the microscopic world with extraordinary fidelity, allowing for not only much higher accuracy but completely novel capabilities,” said Thomas Fuchs, Dr.Sc., Founder and Chief Scientist of Paige.

“By combining Microsoft’s world-class research and cloud infrastructure with Paige’s deep expertise and large-scale data, we are creating new AI models that will enable unprecedented insights into the pathology of cancer,” said Desney Tan, Vice President and Managing Director, Microsoft Health Futures, “Unleashing the power of AI is a game changer in advancing healthcare to improve lives.”

Related Links:
Paige
Microsoft

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.