We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI Combined With Infrared Imaging Automatically Classifies Tumors

By LabMedica International staff writers
Posted on 15 Feb 2023
Print article
Image: AI with infrared imaging enables precise colon cancer diagnostics (Photo courtesy of Pexels)
Image: AI with infrared imaging enables precise colon cancer diagnostics (Photo courtesy of Pexels)

In recent years, there has been a massive advancement in the available treatments for colon cancer. To ensure these therapies, such as immunotherapies, are effective, it is important to accurately diagnose the individual patient to provide specifically tailored treatment. Now, researchers have paired artificial intelligence (AI) with infrared (IR) imaging to develop an automated and precise method for diagnosing colon cancer and tailoring treatments to the patient. This label-free and automated technique complements existing methods for analyzing tissue samples.

Over the course of the past several years, a research team at the Centre for Protein Diagnostics (PRODI) at Ruhr University Bochum (Bochum, Germany) has been working on creating a new digital imaging method known as label-free IR imaging. This method measures the genomic and proteomic composition of the examined tissue, providing molecular information based on the infrared spectra. The information is then decoded using AI and displayed as false-color images utilizing image analysis methods from the field of deep learning.

The PRODI team successfully demonstrated that using deep neural networks, it was possible to effectively determine the microsatellite status, a prognostically and therapeutically relevant parameter, in colon cancer. In this process, the tissue sample passes through a standardized, user-independent, automated process and allows for spatially resolved differential classification of the tumor within an hour. On the other hand, classical diagnostics is used to determine the microsatellite status either through complex immunostaining of various proteins or via DNA analysis.

The ever-improving therapy options have made fast and uncomplicated determination of such biomarkers extremely important. Based on IR microscopic data, the researchers modified, optimized, and trained neuronal networks to establish label-free diagnostics. In contrast to immunostaining, the new approach does not need dyes and is much faster than DNA analysis.

“We were able to show that the accuracy of IR imaging for determining microsatellite status comes close to the most common method used in the clinic, immunostaining,” said PhD student Stephanie Schörner.

Related Links:
Ruhr University Bochum 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.