We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Immune Cells in Cerebrospinal Fluid Predict Response to Immunotherapy

By LabMedica International staff writers
Posted on 22 Mar 2021
Print article
Image: The BD LSRFortessa X-20 cell analyzer (Photo courtesy of BD Biosciences)
Image: The BD LSRFortessa X-20 cell analyzer (Photo courtesy of BD Biosciences)
Immune checkpoint inhibitors including anti-PD1, anti-PD-L1, and anti-CTLA4, have shown significant clinical benefits in patients with progressive or metastatic solid tumors, including some brain metastasis. Notably, these immune-based therapies have improved outcomes for some of those suffering from lung cancer and melanoma.

Some patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Cerebrospinal fluid (CSF) can provide fundamental information about the genomic characteristics of brain tumors and hence be used as a relatively non-invasive liquid biopsy.

A large team of Oncologists and their colleagues at the Vall d’Hebron University Hospital, Barcelona, Spain) analyzed samples from 48 patients with brain metastasis. The scientists assessed the immune cells present in the brain metastases, and in parallel, performed immune cell profiling of the CSF. They sought to identify which cell types were present in the CSF and compare them with those obtained from the metastatic lesions. A total of ten CSF samples were analyzed.

The team loaded samples into the 10× Genomics Chromium Controller for droplet-encapsulation (Pleasanton, CA, USA). Single-cell gene expression and T cell receptor T clonotypes (TCR) were produced using the Chromium Single-Cell 5′ Library, and sequenced on a NovaSeq 6000 (Illumina, San Diego, CA, USA). Immune cell populations were determined after processing by flow cytometry using BD FACSCELESTA (immune cell characterization panel) or BD LSRFortessa cell analyzer (BD Biosciences, San Jose, CA, USA). Other methods used by the team included Immunohistochemistry, Targeted RNA profiling, and Whole exome sequencing.

The team reported that tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes were detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.

Holger Heyn, PhD, a Genomic Scientist and co-corresponding author of the study, said, “Single cell transcriptome sequencing provides the highest resolution for the detection and monitoring of several different diseases. The identification of clonal T-cells in both metastasis and liquid biopsy is of particular interest. We have shown that the sequencing of T-cell receptors provides a cellular barcode that can be assessed outside of the tumor. Importantly, this approach opens up new avenues for the detection of systemic disease.” The study was published on March 8, 2021 in the journal Nature Communications.

Related Links:
Vall d’Hebron University Hospital
10× Genomics
Illumina
BD Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.