Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

By LabMedica International staff writers
Posted on 10 Jul 2025

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. More...

For patients with lung adenocarcinoma, a critical step in treatment is genetic testing to detect mutations in the tumor’s DNA. These mutations help doctors select personalized treatments, but the genetic tests required are not only costly but also slow and can create barriers to timely care. Now, a new study suggests that artificial intelligence (AI) has the potential to streamline cancer care by accurately predicting genetic mutations from routine pathology slides, reducing the need for rapid genetic testing and improving the efficiency of clinical decision-making.

Researchers at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and Memorial Sloan Kettering Cancer Center (New York, NY, USA) have developed an AI model that can predict genetic mutations using standard H&E-stained pathology slides. This innovative approach was trained using a large dataset of lung adenocarcinoma pathology slides matched with next-generation sequencing results. The model analyzes these slides, typically used for routine diagnostic biopsies, to detect mutations like those in the EGFR gene. By identifying EGFR mutations, which are crucial for selecting targeted therapies, the AI model can potentially reduce the reliance on expensive and time-consuming genetic tests, offering a faster and more accessible alternative for personalized cancer treatment.

The AI model was tested on live patient samples at Memorial Sloan Kettering Cancer Center as part of a real-time "silent trial." The findings, published in Nature Medicine, showed that the AI could reliably predict EGFR mutations and reduce the need for rapid genetic tests by more than 40%. This is a significant step forward in integrating AI into cancer diagnostics. The researchers plan to expand this AI model to detect other cancer-related mutations and broaden its applications, aiming for regulatory approval and eventual clinical use in diverse healthcare settings. This could ultimately lead to faster diagnosis, more personalized treatment, and better patient outcomes.

“Our findings show that AI can extract critical genetic insights directly from routine pathology slides,” said Gabriele Campanella, PhD, Assistant Professor of the Windreich Department of Artificial Intelligence and Human Health at the Icahn School of Medicine at Mount Sinai. “This could streamline clinical decision-making, conserve valuable resources, and accelerate patients’ access to targeted therapies by reducing reliance on certain rapid genetic tests.”

Related Links:
Icahn School of Medicine at Mount Sina 
Memorial Sloan Kettering Cancer Center Sinai


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automated Biochemical Analyzer
iBC 900
New
Blood Glucose Test Strip
AutoSense Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.