We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Simple Tool Provides Reliable Method for Identifying Pathogens

By LabMedica International staff writers
Posted on 15 Dec 2023

The overuse of antibiotics globally has led to an increase in antibiotic-resistant bacteria, making the treatment of bacterial diseases increasingly challenging. More...

Antibiotics are a crucial tool in combating these infections, and reducing their usage is essential. To aid in this effort, researchers have devised a new method for identifying bacteria that is simpler, less expensive, and more accurate than previous techniques. This advancement could play a significant role in reducing antibiotic use.

The new method developed by an international research group led by the Norwegian University of Science and Technology (NTNU, Trondheim, Norway) is faster because it eliminates the need for 'gene amplification'. This traditional step, which involves creating multiple copies of genetic material for easier analysis, is no longer necessary. The innovative method focuses on detecting short DNA sequences of bacteria. It achieves this by observing the binding of these sequences to various DNA variants are grafted onto colloids – particles suspended in a liquid.

This approach allows for rapid bacterial identification by analyzing how different bacteria bind to these colloids, causing the, to clump together. The advantage here is the reduced need for analyzing large volumes of genetic material and the ability to bypass the gene copying process. This results in time and cost savings. While this method is still in the early stages of development, it holds significant potential, especially in a context where antibiotic resistance is a growing concern. More work is needed to bring this method into mainstream usage

“We have developed a simple tool that can identify all of the genetic material in bacteria,” said Professor Erika Eiser at NTNU’s Department of Physics. “This allows us to find out more quickly what kind of bacteria a sick person or animal is affected by, or what kind of bacteria are found in food or the environment. We can then also decide whether it is necessary to use antibiotics against the bacterium, and if so what kind, so we don’t have to use as much medication.”

Related Links:
NTNU 


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.