We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

NEW ENGLAND BIOLABS, INC

New England Biolabs, Inc. focuses on the discovery and production of enzymes for molecular biology applications and o... read more Featured Products: More products

Download Mobile App




Biomarkers Predict Lyme Disease Post-Treatment Prognosis

By LabMedica International staff writers
Posted on 06 Dec 2022
Print article
Image: The NEBNext Ultra II Directional RNA Library Prep Kit (Photo courtesy of New England Biolabs)
Image: The NEBNext Ultra II Directional RNA Library Prep Kit (Photo courtesy of New England Biolabs)

Testing and diagnosis of the earliest stages of Lyme Disease (LD) have proven to be difficult or unreliable. The universally accepted diagnostic test for LD is a positive enzyme-linked immunosorbent assay (ELISA) followed by a positive western blot for immunoglobulin M (IgM) and IgG.

Antibiotic treatment includes a dosing regimen of doxycycline, amoxicillin, ceftriaxone, or cefotaxime, dependent on patient age and displayed symptoms. Even when the disease is clearly diagnosed and properly treated, about 10%–20% of affected individuals do not respond completely and develop prolonged symptoms, a condition termed post-treatment LD (PTLD).

A team of medical scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their colleagues enrolled 152 individuals (66 females and 86 males) with symptoms of post-treatment LD (PTLD) to profile their peripheral blood mononuclear cells (PBMCs) with RNA sequencing (RNA-seq). Their average age was 47.27 ±15.85. The acute LD cohort consisted of 72 patients made of 31 females and 41 males and their average age was 47.19 ±15.68.

PBMCs were isolated from fresh whole blood using Ficoll. RNA was extracted from 107 PBMCs using RLT Lysis Buffer (Qiagen, Germantown, MD, USA). The NEBNext Ultra II Directional RNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA) was used to generate RNA-seq libraries. Poly A RNAs were isolated from total RNAs using NEBNext Poly(A) Magnetic Isolation Module and then fragmented for cDNA synthesis. The prepared samples were processed by an Illumina HiSeq2500 (Illumina, San Diego, CA, USA).

The investigators observe that most individuals with PTLD have an inflammatory signature that is distinguished from the acute LD group. By distilling gene sets from this study with gene sets from other sources, they identified a subset of genes that are highly expressed in the cohorts, but are not already established as biomarkers for inflammatory response or other viral or bacterial infections. They further reduce this gene set by feature importance to establish an mRNA biomarker set capable of distinguishing healthy individuals from those with acute LD or PTLD as a candidate for translation into an LD diagnostic. The 35 gene profile included TTC26, TTC23, IFT 74, IFT81, IFT85, ARL13B, CEP83, CEP162, CEP76, and CEP44. CEP83 encodes a protein involved in centrosome docking on the plasma membrane and is critical for primary cilia and immune synapse formation.

The authors concluded that their study produced a gene-expression profile for PTLD. This is just a first step that requires confirmation for diagnosis of PTLD. Gene expression can support the diagnosis of PTLD in individuals with a history of prior diagnosed and treated LD and persistent post-treatment symptoms. The study was published on November 15, 2022 in the journal Cell Reports Medicine.

Related Links:
Icahn School of Medicine at Mount Sinai
Qiagen
New England Biolabs
Illumina

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.