Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fastest DNA Sequencing Technique Diagnoses Rare Genetic Diseases in Mere Hours

By LabMedica International staff writers
Posted on 19 Jan 2022

A research effort has set the first Guinness World Record for the fastest DNA sequencing technique, which was used to sequence a human genome in just five hours and two minutes. More...

Researchers at Stanford Medicine (Stanford, CA, USA) along with their collaborators have developed a new ultra-rapid genome sequencing approach that was used to diagnose rare genetic diseases in an average of eight hours - a feat that’s nearly unheard of in standard clinical care.

Standard tests screen a patient’s blood for markers associated with disease, but they scan for only a handful of well-documented genes. Commercial labs, which often run these tests, are slow to update the molecules for which they screen, meaning it can take a long time before newly discovered disease-causing mutations are integrated into the test. And that can lead to missed diagnoses. Genome sequencing allows scientists to see a patient’s complete DNA makeup, which contains information about everything from eye color to inherited diseases. Genome sequencing is vital for diagnosing patients with diseases rooted in their DNA: Once doctors know the specific genetic mutation, they can tailor treatments accordingly. That's why rapid genome sequencing could be such a game-changer for patients ailing from rare genetic diseases. Scientists can scan a patient's entire genome for all gene variants suggested by the scientific literature, even if that variant was discovered only the day before. Furthermore, if a patient doesn't initially receive a genetic diagnosis, there's still hope that scientists will find a new gene variant linked to the patient's disease down the line.

The mega-sequencing approach devised by the Stanford researchers has redefined “rapid” for genetic diagnostics: Their fastest diagnosis was made in just over seven hours. Fast diagnoses mean patients may spend less time in critical care units, require fewer tests, recover more quickly and spend less on care. Notably, the faster sequencing does not sacrifice accuracy. Over the span of less than six months, the team enrolled and sequenced the genomes of 12 patients, five of whom received a genetic diagnosis from the sequencing information in about the time it takes to round out a day at the office. The team’s diagnostic rate, roughly 42%, is about 12% higher than the average rate for diagnosing mystery diseases.

In one of the cases, it took a snappy five hours and two minutes to sequence a patient’s genome, which set the first Guinness World Records title for fastest DNA sequencing technique. The time it took to sequence and diagnose that case was seven hours and 18 minutes, which is about twice as fast as the previous record for a genome sequencing-based diagnosis (14 hours). Fourteen hours is still an impressively quick turnaround, and the Stanford researchers now plan to offer a sub-10-hour turnaround to patients in intensive care units at hospitals.

Perhaps the most important feature of the diagnostic approach’s ability to quickly spot suspicious fragments of DNA is its use of something called long-read sequencing. Traditional genome-sequencing techniques chop the genome into small bits, spell out the exact order of the DNA base pairs in each chunk, then piece the whole thing back together using a standard human genome as a reference. But that approach doesn’t always capture the entirety of our genome, and the information it provides can sometimes omit variations in genes that point to a diagnosis. Long-read sequencing preserves long stretches of DNA composed of tens of thousands of base pairs, providing similar accuracy and more detail for scientists scouring the sequence for errors. Only recently have companies and researchers honed the accuracy of the long-read approach enough to rely on it for diagnostics. That and a drop from its once-hefty price tag created an opportunity for the Stanford researchers. This study is the first to demonstrate the feasibility of this type of long-read sequencing as a staple of diagnostic medicine.

“A few weeks is what most clinicians call ‘rapid’ when it comes to sequencing a patient’s genome and returning results,” said Euan Ashley, MB ChB, DPhil, professor of medicine, of genetics and of biomedical data science at Stanford. “It was just one of those amazing moments where the right people suddenly came together to achieve something amazing. It really felt like we were approaching a new frontier.”

Related Links:
Stanford Medicine 


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.