We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Molecular Characterization of Microbiota in Cerebrospinal Fluid Using WGA

By LabMedica International staff writers
Posted on 02 Sep 2021
Print article
Image: The MiSeq benchtop sequencer enables targeted and microbial genome applications, with high-quality sequencing, simple data analysis, and cloud storage (Photo courtesy of Illumina)
Image: The MiSeq benchtop sequencer enables targeted and microbial genome applications, with high-quality sequencing, simple data analysis, and cloud storage (Photo courtesy of Illumina)
Hydrocephalus is a common cause of neurological disability in children. Cerebrospinal fluid (CSF) shunt placement allows children with hydrocephalus to survive and avoid ongoing brain injury.

Understanding the etiology of cerebrospinal fluid shunt infections and reinfections requires detailed characterization of associated microorganisms. Traditionally, identification of bacteria present in the CSF has relied on culture methods, but recent studies have used high throughput sequencing of 16S rRNA genes.

Neurosurgeons at the Seattle Children’s Hospital (Seattle, WA, USA) and their colleagues enrolled in a study a subset of children who failed treatment for CSF shunt infection (i.e. had CSF shunt reinfection) and had CSF collected both near the beginning and end of both infection episodes. All samples were tested by routine CSF aerobic culture in hospital-certified laboratories.

DNA was extracted and purified from CSF samples using the AGOWA mag Mini DNA isolation kit (AGOWA, LGC Genomics, Berlin, Germany) and CSF microbiota amplicon library construction was carried out using a one-step PCR amplification targeting the V4 region of the bacterial 16S rRNA gene. Sequencing of the pooled libraries was carried out for 600 cycles on an Illumina MiSeq desktop sequencer using the MiSeq Reagent Kit v3 (Illumina, San Diego, USA). Whole genome amplification (WGA) of DNA purified from CSF samples and two mock community samples was carried out using the REPLI-g Mini Kit (Qiagen, Hilden, Germany) and sequenced on the Illumina HiSeq 2500 platform to produce 96-bp paired-end reads.

Taxonomic assignments of sequences from WGA and 16S were compared with one another and with conventional microbiological cultures. While classification of bacteria was consistent among all the approaches, WGA provided additional insights into sample microbiological composition, such as showing relative abundances of microbial versus human DNA, identifying samples of questionable quality, and detecting significant viral load in some samples. One sample yielded sufficient non-human reads to allow assembly of a high-quality Staphylococcus epidermidis genome, denoted CLIMB1, which we characterized in terms of its multilocus sequence typing (MLST) profile, gene complement (including putative antimicrobial resistance genes), and similarity to other annotated S. epidermidis genomes.

The authors concluded that they had demonstrated that WGA directly applied to CSF is a valuable tool for the identification and genomic characterization of dominant microorganisms in CSF shunt infections, which can facilitate molecular approaches for the development of better diagnostic and treatment methods. The study was published on August 20 2021 in the journal Frontiers in Cellular and Infection Microbiology.

Related Links:
Seattle Children’s Hospital
LGC Genomics
Illumina
Qiagen


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.