We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Specific RUNX1 Mutations Cause Different Disease Types

By LabMedica International staff writers
Posted on 28 Jan 2021
Mutations of the hematopoietic master regulator RUNX1 are associated with acute myeloid leukemia, familial platelet disorder and other hematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. More...


RUNX1 mutations can occur within the DNA-binding domain (DBD), the transactivation domain (TAD), or are a result of translocations resulting in the generation of fusion proteins. The biochemical behavior of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown.

Cancer and Genomic Scientists at the University of Birmingham (Birmingham, UK;) compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. The team utilized a well-characterized embryonic stem cell (ESC) differentiation system, which recapitulates the different steps of hematopoietic specification of blood cells from haemogenic endothelium (HE) and allows inducible expression of oncoproteins.

The scientists differentiated ESCs were purified by magnetic cell sorting, using biotin-conjugated CD309 antibody, anti-biotin microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Cell populations were identified and sorted and analyzed on a Beckman Coulter analyzer (Beckman Coulter, Pasadena, CA, USA) or sorted on a FACS Aria cell sorter (BD Bioscience, Franklin Lakes, NJ, USA). The team employed other techniques in their study, including CFU assays, Western Blotting, RNA-seq, ATAC-seq and ChIP-seq. Immunocytochemistry slides were visualized using a Zeiss LSM 780 equipped with a Quasar spectral (GaAsP) detection system (Zeiss, Jena, Germany).

The team showed that how each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. Some types of RUNX1 mutations directly changed how other genes behaved in blood cells, not all did. In particular, the mutations that are inherited through families do not immediately affect the cells but instead change the roadmap they follow to become other cell types, such as platelets and white blood cells.

Constanze Bonifer, PhD, a Professor of Experimental Haematology, and lead author of the study, said, “The most important results we found came from studying mutations that run in families which predisposes their members to diseases such as Familial Platelet Disorder (FPD) and Acute Myeloid Leukemia (AML). AML is an aggressive cancer of the white blood cells, whereas in FPD, the ability to produce blood clots which is required to stop bleeding is impaired. Prior to this study, it was completely unclear why changes in just one gene cause so many different diseases.”

The team concluded that their results demonstrate that different classes of mutant RUNX1 proteins use unique multifactorial mechanisms to cause disease and so development of novel treatments will require an individual approach. The study was published on January 4, 2021 in the journal Life Science Alliance.

Related Links:
University of Birmingham
Miltenyi Biotec
Beckman Coulter
BD Bioscience
Zeiss



New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
Rapid Molecular Testing Device
FlashDetect Flash10
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Pathology

view channel
Image: The new system allows surgeons to identify genotyping of brain tumors and determine optimal resection margins during surgery (Photo courtesy of Nagoya University)

New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes

Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.