We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Distinct Myelodysplastic Syndrome Subtypes Identified by Genomic, Transcriptomic Analysis

By LabMedica International staff writers
Posted on 23 Dec 2019
Myelodysplastic syndrome is a premalignant disease that affects myeloid cell. More...
It is a precursor to acute myeloid leukemia, an aggressive blood cancer caused by the accumulation of immature blood cells.

The increased use of sequencing in the past decade has improved the field's understanding of the genetic mutations that cause myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but for the most part, those data have not been integrated with expression data.

Scientists from St. Jude Children's Research Hospital (Memphis, TN, USA) and their colleagues conducted whole-genome sequencing and transcriptomic analysis via RNA-seq of cancer samples from more than 1,300 adult patients, nearly 600 with AML and around 700 with MDS and looked at how detected genetic variants tracked with gene expression patterns, patients' clinical disease features, and outcomes.

The team was able to confirm the diagnosis of 11% of patients where AML was due to recurrent genetic abnormalities according to the World Health Organizations' classifications. The investigators also identified more than 7,000 variants (including somatic and germline mutations, chimeric fusions, and structural variants) in 839 genes, around a third of which were potential driver genes. Patients harbored between one and 18 mutations, and averaged five mutations. Some genetic mutations overlapped between the two diseases, but were more frequent in one setting than the other. For example, NPM1 mutations occurred in 27% of AML and around 1% of MDS cases.

The investigators showed that while AML cases had gene expression profiles that clustered with specific mutational patterns, expression profiles of MDS patients were not as variable even though they also had a complex landscape of mutations. Around 27% of MDS cases had mutations in SF3B1, which did not show up in 14% of patients with SFRS2 mutations and 6% of cases with U2AF1 mutations. Additionally, around 14% of MDS cases had TP53 mutations and 11% had RUNX1 mutations, which occurred with mutations in epigenetic regulators and were associated with patient outcomes.

Ilaria Iacobucci, PhD, the senior author of the study, said, “This study, for the first time, provides a very detailed description of how different mutations cooperate together, and shows how this can be used to stratify patients by cataloging different mutations and correlating them with outcome.” The study was presented at the at the American Society of Hematology annual meeting held December 7-10, 2019 in Orlando, FL, USA.

Related Links:
St. Jude Children's Research Hospital


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.