We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Unique Genetic Makeup of Myeloma Tumor Cells Profiled

By LabMedica International staff writers
Posted on 17 Dec 2018
Print article
Image: Tumor heterogeneity, clonal evolution and therapy resistance was revealed using single cell profiling of multiple myeloma patients (Photo courtesy of Weizmann Institute of Science).
Image: Tumor heterogeneity, clonal evolution and therapy resistance was revealed using single cell profiling of multiple myeloma patients (Photo courtesy of Weizmann Institute of Science).
Multiple myeloma is the second-most common type of blood cancer. Multiple myeloma occurs when plasma cells in the bone marrow, the cells that produce antibodies, proliferate out of control and lead to various type of organ failure and death.

A major stumbling block, in diagnosing myeloma disease is the fact that each patient is unique and current blood tests are incapable of identifying early disease onset and classifying which patient should receive which treatment. Patients whose routine blood tests reveal some hallmarks of the disease in an early and precancerous stage are followed closely with a "watch and wait" strategy, but every year 1% of them will lose in this "Russian roulette" and develop the full-blown myeloma disease.

A large team of international scientists collaborating with the Weizmann Institute of Science (Rehovot, Israel) applied single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high inter-individual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors.

The new method sequences the RNA in thousands of individual cells from the patient blood or bone marrow, identifying the specific gene program that is active in each individual cell. In order to understand the myeloma cancer blueprint, the scientists first generated a high-resolution model of normal plasma cells by sequencing tens of thousands of cells from healthy individuals undergoing hip-replacements who served as a control group.

The plasma cells of the control patients were highly similar within and across individuals, basically showing a single, common blue print of normal plasma cells. Comparing the normal blueprint to the blue prints of patients, showed that the blueprint of myeloma cancer cells are extremely heterogeneous, with every patient showing its own, unique blueprint and with some patients demonstrating several tumor clones displaying more than a single blueprint in one patient.

The investigators identified extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, they detected rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease.

Ido Amit, PhD, an immunologist and a leading author of the study, said, “Single cell genomic analysis until now was confined to a small number of research labs, we are constantly pushing the boundaries of the technology in ways that will make it a major clinical discovery and diagnostics tool.” The study was published on December 6, 2018, in the journal Nature Medicine.

Related Links:
Weizmann Institute of Science

Platinum Supplier
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
ELISA & CLIA Analyzer
Autoplex G3

Print article

Channels

Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Hematology

view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more

Immunology

view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more

Microbiology

view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more

Pathology

view channel
Image: AI methods used in satellite imaging can help researchers analyze tumor images (Photo courtesy of Karolinska Institutet)

AI Approach Combines Satellite Imaging and Ecology Techniques for Analysis of Tumor Tissue

Advancements in tumor imaging technology have significantly enhanced our ability to observe the minute details of tumors, but this also brings the challenge of interpreting vast amounts of data generated... Read more

Industry

view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.