We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Detecting Cancer as DNA Changes Could Enhance Diagnosis

By LabMedica International staff writers
Posted on 26 Apr 2017
DNA methylation is an epigenetic modification involving the addition of a methyl group to DNA, which is heavily involved in gene expression and regulation, thereby critical to the progression of diseases such as cancer.

A method has been developed to detect, count and map tiny additions to DNA called methylations, which can be a warning sign of cancer, with unprecedented resolution. More...
The method detects and maps DNA methylation by threading the DNA through a tiny hole in a thin sheet of conductive material with a current running through it.

Scientists at the University of Illinois at Urbana-Champaign developed a method for the detection and localization of DNA methylation that can be achieved with nanopore sensors made of two-dimensional materials such as graphene and molybdenum di-sulfide. They labelled each DNA methylation site with a methyl-CpG binding domain protein (MBD1), and combine molecular dynamics simulations with electronic transport calculations to investigate the translocation of the methylated DNA–MBD1 complex through two-dimensional material nanopores under external voltage biases.

The passage of the MBD1-labeled methylation site through the pore is identified by dips in the current blockade induced by the DNA strand, as well as by peaks in the transverse electronic sheet current across the two-dimensional layer. The position of the methylation sites can be clearly recognized by the relative positions of the dips in the recorded ionic current blockade with an estimated error ranging from 0 to 16%.

The team was able to define the spatial resolution of the two-dimensional material nanopore device as the minimal distance between two methylation sites identified within a single measurement, which are 15 base pairs by ionic current recognition, but as low as 10 base pairs by transverse electronic conductance detection, indicating better resolution with this latter technique.

Jean-Pierre Leburton, PhD, a professor and lead investigator, said, “DNA methylation is actually a starting process for cancer. So we want to detect how many of them there are and how close together they are. That can tell us at which stage the cancer is. Our simulations indicate that measuring the current through the membrane instead of just the solution around it is much more precise. If you have two methylations close together, even only 10 base pairs away, you continue to see two dips and no overlapping. We also can map where they are on the strand, so we can see how many there are and where they are.” The study was published on April 11, 2017, in the inaugural issue of the journal npj 2D Materials and Applications.


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
Urine Chemistry Control
Dropper Urine Chemistry Control
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.