We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Whole Genome Sequencing Better at Tracing TB Outbreaks

By LabMedica International staff writers
Posted on 25 Feb 2013
A study revealed that a new form of genetic testing of the bacteria that cause tuberculosis (TB) provides better information on TB transmission and thus allows tracing of TB outbreaks more accurately than the current standard tests.

A team of experts from public-health institutions, research institutes, and universities in Germany and France led by Stefan Niemann from the Forschungszentrum Borstel (Borstel, Germany) compared the results of the two types of tests on 86 Mycobacterium tuberculosis isolates from a TB outbreak in the German states Hamburg and Schleswig-Holstein (overall 2301 TB cases have been investigated in the study period from 1997 to 2010).

They found that the new test, based on the sequencing of the respective whole genomes (i.e., whole genome sequencing, WGS) provided more accurate information on clustering and temporal spread of the pathogen than the standard tests, which are based on the analysis of small genome regions (classical genotyping). More...
Importantly, while standard tests were not able to distinguish the strains involved, WGS-based analyses revealed that only a particular clone started spreading at the onset of the outbreak, suggesting that subtle differences in the genome might influence the success of pathogen transmission.

"Only genome based investigations allowed us to trace the spread of M. tuberculosis with the resolution needed to visualize transmission patterns correctly," said Dr. Andreas Rötzer, first author of the study.

Genotyping of M. tuberculosis strains is usually used to detect TB outbreaks and guide tracing contacts of TB cases. However, standard genotyping analyses only tiny parts of the genome, and may therefore not be able to distinguish between closely related strains spreading in distinct transmission chains. This was confirmed by this study: WGS-based typing discriminated better the different strain variants involved in the outbreak, was in better agreement with information on known contacts between the patients, and allowed the investigators to more precisely follow the spread of clones over space and time.

Based on the genome sequencing data, the authors were also able to estimate that the genome of M. tuberculosis evolves in its natural host population (infected individuals) at a slower mutation rate than other bacterial pathogens (0.4 mutations per genome per year). This measure of the bacterium’s mutation rate will be useful to trace future outbreaks and estimate when and via which individual they originated.

An additional advantage of WGS compared to standard genotyping is that WGS allows the identification of mutations of bacterial genes causing antibiotic resistance mutations and variations in virulence genes. This is especially important as M. tuberculosis strains that are resistant to the most potent drugs are increasingly emerging in several world regions and rapid detection of resistance is crucial for successful treatment.

The costs of whole genome analysis based on Next Generation Sequencing are declining; therefore, this test could soon become the standard method for identifying transmission patterns and rates of infectious disease outbreaks.

In addition, the authors state: “We envision that the progressive effective implementation of WGS for Public Health and medical diagnostics will also be accelerated by the broader distribution of more accessible and flexible sequencing machines, and upcoming bioinformatics developments to facilitate quick and relevant interpretation of the resulting data by the clinical and medical staff.”

The study was published in PLOS Medicine on February 12, 2013.

Related Links:

Forschungszentrum Borstel



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.