We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Abbott Diagnostics

Abbott Diagnostics provides medical diagnostic instruments, tests, automation and informatics solutions, including cl... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Jan 2021 - 27 Jan 2021
Virtual Venue
24 Feb 2021 - 28 Feb 2021
Virtual Venue

Newly Developed Immunoassay Evaluated for Infectious Diseases

By LabMedica International staff writers
Posted on 23 Dec 2020
Print article
Image: The Alinity i is a compact, immunoassay system that can reliably be used to diagnose infectious diseases (Photo courtesy of Abbott Laboratories).
Image: The Alinity i is a compact, immunoassay system that can reliably be used to diagnose infectious diseases (Photo courtesy of Abbott Laboratories).
Although a diagnosis of infectious diseases is essential for timely treatment, the performance of diagnostic tests has been hardly evaluated due to variable results that are influenced by multiple factors in different conditions.

Immunoassays are bioanalytical methods to measure the concentration of an analyte through the reaction of an antigen and an antibody. Most diagnostic tests of infectious diseases are performed in a qualitative manner. By applying a cutoff or ordinal scale to the quantitative results, converted qualitative results reveal discontinuous and reduced information and the result near the cutoff shows high uncertainty.

Medical Laboratory Scientists at Seoul National University Hospital (Seoul, Korea) evaluated the precision, linearity, correlation, and carryover of the analytical performances for the Alinity i by comparison with ARCHITECT i2000SR system (Abbott Laboratories, Abbott Park, IL, USA). For evaluation of compatibility, a total of 800 samples were derived from healthy adults and patients with positive results for various infectious diseases from December 2018 to December 2019.

A total of 16 analytes were selected: HAV Ab IgG(signal/cutoff (S/CO)), HBsAg (S/CO), HBeAg (S/CO), anti‐HBc (S/CO), anti‐HBe (S/CO), anti‐HBs (mIU/mL), anti‐HCV (S/CO), HIV Ag/Ab (S/CO), EBV VCA IgM (S/CO), EBV VCA IgG (S/CO), EBV EBNA IgG (S/CO), CMV IgM (relative light units, RLU), CMV IgG (AU/mL), Toxoplasma IgG (IU/mL), Rubella IgG (IU/mL), and Syphilis TP (S/CO). Among them, anti‐HBs (mIU/mL), CMV IgG (AU/mL), Toxoplasma IgG (IU/mL), and Rubella IgG (IU/mL) are quantitative tests, and the remaining analytes are qualitative tests.

The team reported that for low, medium, and high level of four quantitative analytes (anti‐HBs, CMV IgG, Toxoplasma IgG, and Rubella IgG), the percent coefficient of variation (%CV) of repeatability and intermediate precision were between 0% and 4.18%. For four quantitative analytes (anti‐HBs, CMV IgG, Toxoplasma IgG, and Rubella IgG), all correlation coefficients (r2) for these analytes were ≥ 0.99, representing excellent linearity ranges. In the method comparison between the Alinity i and ARCHITECT i2000SR system, all quantitative analytes showed a very strong correlation (r ≥ 0.994) based on Deming regression. All carryover rate for quantitative and qualitative analytes were less than 1.0% (−0.11% ~ 0.21%).

The authors concluded that the Alinity i system characterized had an excellent performance by ensuring reliable measurements for clinical laboratories and would be suitable as a routine immunoassay analyzer for screening infectious diseases. The study was published on December 7, 2020 in the Journal of Clinical Laboratory Analysis.

Print article


Molecular Diagnostics

view channel
Image: Schematic representation of Chiari malformation type 1; it involves the lower part of the cerebellum known as tonsils, but not the brain stem (Photo courtesy of Healthline).

Common Brain Malformation Traced to Its Genetic Roots

About one in 100 children has a common brain disorder called Chiari 1 malformation, but most of the time such children grow up normally and no one suspects a problem. However about one in 10 of those children,... Read more


view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.