We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

BRUKER

BRUKER offers high-performance scientific instruments and high-value analytical and diagnostic solutions that enable ... read more Featured Products: More products

Download Mobile App




MALDI-TOF Can Predict Antimicrobial Resistance in Clinical Samples

By LabMedica International staff writers
Posted on 27 Jan 2022
Antimicrobial-resistant bacteria and fungi pose a serious and increasing threat to the achievements of modern medicine. More...
Infections with antimicrobial-resistant pathogens are associated with substantial morbidity, mortality and healthcare costs.

Matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectrometry enables rapid microbial species identification. In only a few minutes, MALDI-TOF mass spectrometry can be used to characterize the protein composition of single bacterial or fungal colonies, and the results are available usually within 24 hours after sample collection.

Medical Microbiologists at the University of Basel (Basel, Switzerland) and their colleagues developed a database, which they dubbed the Database of Resistance Information on Antimicrobials and MALDI-TOF Mass Spectra, or DRIAMS, by collecting MALDI-TOF mass spectra and resistance information on more than 30,000 clinical isolates from four different Swiss clinical labs.

The largest collection within DRIAMS, called DRIAMS-A, came from University Hospital Basel (Basel, Switzerland) and included 145,341 mass spectra. Most of the spectra could be generated from clinical samples within 24 hours. All laboratories used the Microflex Biotyper System (Bruker Daltonics, Bremen, Germany), which is a widely used MALDI-TOF mass spectrometry system. Resistance categories for bacteria were determined using either microdilution assays (VITEK 2, BioMérieux, Marcy l'Etoile France), minimum inhibitory concentration (MIC) stripe tests (Liofilchem, Roseto degli Abruzzi, Italy) or disc diffusion tests (Thermo Fisher Scientific, Waltham MA, USA). Resistance categories for yeast were determined using Thermo Fisher Scientific’s Sensititre Yeast One.

The investigators particular focused their analyses on three key clinical pathogens, Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae, and antibiotics used to treat infections they cause. For all three, they reported a high overall performance. The classifier could predict S. aureus resistance to oxacillin with 80% accuracy as well as E. coli and K. pneumoniae resistance to ceftriaxone currently with 74% accuracy for both. For 31 of the 42 antibiotics studied, the classifier generated could correctly classify resistance with 80% accuracy. In a retrospective clinical case study, the researchers reviewed 416 cases with positive S. aureus, E. coli, and K. pneumoniae cultures. For 63 of these, an infectious disease specialist was consulted to help guide antibiotic treatment.

The authors concluded that their retrospective clinical case study shows that their classifier might have a beneficial impact on patient treatment and promote antibiotic stewardship. MALDI-TOF mass spectra-based machine learning may thus be an important new tool for treatment optimization. The study was published on January 10, 2022 in the journal Nature Medicine.

Related Links:
University of Basel
University Hospital Basel
Bruker Daltonics
BioMérieux
Liofilchem
Thermo Fisher Scientific



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.