We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria

By LabMedica International staff writers
Posted on 13 Feb 2026

Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread. More...

These bacteria thrive in hospitals, sewage treatment facilities, animal farms, and aquaculture environments, evolving new ways to evade treatment. Current strategies largely attempt to slow resistance, but few approaches can actively reverse it once established. Researchers have now developed a genetic tool designed to remove antibiotic-resistant elements from bacterial populations, potentially restoring their sensitivity to existing drugs.

Researchers at the University of California San Diego (La Jolla, CA, USA) have developed a CRISPR-based platform inspired by gene drives, which are used in insects to disrupt the spread of harmful traits. The second-generation system, known as pPro-MobV, introduces a genetic cassette that targets antibiotic resistance genes carried on plasmids, circular DNA elements that replicate within bacterial cells. The cassette spreads through bacterial populations via conjugal transfer, a process similar to mating, exploiting natural cell-to-cell connections to disseminate the disabling components.

The researchers demonstrated that the pPro-MobV system could effectively propagate through bacterial communities, including biofilms, which are notoriously resistant to conventional cleaning and antibiotic treatment. By inserting CRISPR components into antibiotic resistance genes, the system inactivated these elements and restored drug sensitivity. The findings, published in npj Antimicrobials and Resistance, show that the technology can function in complex bacterial environments.

The study also revealed that bacteriophages could carry and deliver components of the system, potentially enhancing its reach and effectiveness. Because biofilms contribute to persistent infections, the ability to spread resistance-disabling elements in these settings has significant clinical implications. The technology may support infection control in healthcare facilities where antibiotic resistance is prevalent.

Researchers envision combining the platform with engineered bacteriophages and incorporating safety features such as homology-based deletion to remove the cassette if needed. Future work will focus on refining the system for practical deployment and evaluating its broader impact on microbial ecosystems.

“With pPro-MobV we have brought gene-drive thinking from insects to bacteria as a population engineering tool,” said UC San Diego School of Biological Sciences Professor Ethan Bier. “With this new CRISPR-based technology, we can take a few cells and let them go to neutralize AR in a large target population.”

Related Links:
UC San Diego


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Industry experts gather at WHX Labs Dubai to discuss how leadership must adapt as AI and automation transform the laboratory (Photo courtesy of Shutterstock)

WHX Labs in Dubai spotlights leadership skills shaping next-generation laboratories

WHX Labs in Dubai (formerly Medlab Middle East), held at Dubai World Trade Centre (DWTC) from 10–13 February, brings together international experts to discuss the factors redefining laboratory leadership,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.