We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Compounds Detected in Breath Samples Specific to Ovarian Cancer

By LabMedica International staff writers
Posted on 13 Oct 2015
Print article
Image: Schematic representation of analysis of breath samples for the diagnosis of ovarian cancer (Photo courtesy of Technion).
Image: Schematic representation of analysis of breath samples for the diagnosis of ovarian cancer (Photo courtesy of Technion).
Diagnosing cancer today usually involves various imaging techniques, examining tissue samples under a microscope, or testing cells for proteins or genetic material.

In search of safer and less invasive ways to tell if someone has cancer, analyzing breath and defining specific profiles of compounds in breath samples is under investigation, but translating these exhaled disease fingerprints into a meaningful diagnosis has required a large number of sensors, which makes them impractical for clinical use.

Chemical engineers at the Technion, Israel Institute of Technology (Haifa, Israel) and their colleagues developed a small, breath-diagnostic array based on flexible gold-nanoparticle sensors for use in an “electronic nose.” Flexible sensors based on molecularly modified gold nanoparticles (GNPs) were integrated into a dynamic cross-reactive diagnostic sensing array. Each bending state of the GNP-based flexible sensor gives unique nanoparticle spatial organization, altering the interaction between GNP ligands and volatile organic compounds (VOCs), which increases the amount of data obtainable from each sensor.

Individual dynamic flexible sensor could selectively detect parts per billion (ppb) level VOCs that are linked with ovarian cancers in exhaled breath and discriminate them from environmental VOCs that exist in exhaled breath samples, but do not relate to ovarian cancer per se. Strain-related response successfully discriminated between exhaled breath collected from 43 volunteers, 17 of whom had ovarian cancer, with data from a single sensor being sufficient to obtain 82% accuracy, on breath samples irrespective of important confounding factors, such as tobacco consumption and comorbidities. The approach raises the hope of achieving an extremely simple, inexpensive, portable, and noninvasive diagnostic procedure for cancer and other diseases. The study was published online on September 9, 2015, in the journal Nano Letters.

Related Links:

Technion, Israel Institute of Technology

Gold Supplier
HAI Assay Quality Control
Amplichek II
Automated Immunoassay Analyzer
cobas e 411
Rapid Procalcitonin (PCT) Test
Hemoglobin A1c Control
HbA1c (Auto)

Print article
IIR Middle East



view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.