We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Simple Paper Test Detects False or Substandard Antibiotics

By LabMedica International staff writers
Posted on 04 Sep 2018
Print article
Image: A simple, paper-based test can quickly identify a falsified or substandard antibiotic (Photo courtesy of John Eisele).
Image: A simple, paper-based test can quickly identify a falsified or substandard antibiotic (Photo courtesy of John Eisele).
In the developing world, the manufacture and the distribution of substandard, non-legitimate medicines is widespread. It has been estimated that up to 10% of all drugs worldwide could be falsified with up to 50% of those some form of antibiotics.

When a prescription is filled at the doctor's office or pharmacy today, mostly it is taken for granted that these commonly prescribed medicines are real, and of good quality. A counterfeit or diluted antibiotic cannot only endanger an unwitting patient, but can also contribute to the wider problem of antimicrobial resistance.

Biochemists at the Colorado State University (Fort Collins, CO, USA) have created a paper-based test that can quickly determine whether an antibiotic sample is appropriate strength, or diluted with filler substances like baking soda. Similar to the mechanism of a home pregnancy test, a strip of paper turns a distinctive color if a falsified antibiotic is present. The test is based on the fact that bacteria naturally produce an enzyme that can give them resistance to antibiotics by chemically binding to portions of the antibiotic molecule. The team used this very enzyme, called beta-lactamase, to empower their device to detect the presence of antibiotics in a given sample.

For the test, the end-user dissolves the antibiotic in water, and adds the solution to a small paper device. The paper contains a molecule called nitrocefin that changes color when it reacts with the enzyme. In this setup, the antibiotic and the nitrocefin on the paper are in competition to bind with the enzyme in a detection zone. With a good antibiotic dose, there is little color change in the paper strip, because the antibiotic outcompetes the nitrocefin and successfully binds with the beta-lactamase enzyme. But in a falsified or weakened antibiotic, the paper goes red, because the enzyme instead reacts with the nitrocefin. In short, yellow means good (appropriate strength antibiotic); red means bad (diluted antibiotic).

The device also includes a pH indicator, to determine if a sample is acidic or alkaline. This extra information could further alert the user to whether a sample has been falsified with filler ingredients, which might otherwise confound the main test. The test is simple and fast taking about 15 minutes, and it can be used by an untrained professional. Traditional approaches for testing drug purity rely on large, expensive analytical equipment in laboratories, including mass spectrometry, making it challenging or impossible for developing countries to access easily.

To ensure the usability of the device, the team included in their experiment a blind test with five users who were unfamiliar with the device or the science behind it. They all successfully identified 29 out of 32 antibiotic samples as either legitimate or false. The test is effective for a broad spectrum of beta-lactam antibiotics, but there's room for refinement. The sample most misidentified by untrained users was acetylsalicylic acid, which did not turn as red as the other false samples because its acidic pH destabilized the reaction. Being able to more accurately distinguish such specific chemicals will be the subject of future optimization of the new test. The study was published originally published on June 26, 2018, in the journal ACS Sensors.

Related Links:
Colorado State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.