We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Platform Speeds Biomolecule Detection Using Magnetic Web

By LabMedica International staff writers
Posted on 01 May 2017
Researchers have used micromagnetophoretic network patterns that resemble spider webs to develop an improved diagnostic and treatment-monitoring technology. More...
By overcoming the diffusion-based transport limitation, their lab-on-a-chip (LOC) platform has achieved 20 times faster detection capability than existing biosensors.

A research team from Daegu Gyeongbuk Institute of Science and Technology (DGIST; Daegu, Korea) led by Professor CheolGi Kim developed the platform, which increased the ability to collect low-density biomolecules by attracting biomolecules labeled with the superparamagnetic particles to the sensing area.

"The existing biosensors require long time to detect low-density biomolecules and result in poor sensing efficiency as they only depend on diffusion. The magnetic field based biosensor platform improves the collection capability of biomolecules and increases the speed and sensitivity of the biomolecules movement,” said Prof. Kim, “We are planning to use this platform for early diagnosis as well as recurrence diagnosis of diseases such as cancer."

The sensing capability of a biosensor is determined by the resolution of the sensor itself and the movement and reaction rate of molecules. Many research groups have been improving the resolution through the development of nanomaterials but there has been a limitation to improving sensor sensitivity due to the low diffusion transport of biomolecules (e.g. proteins, DNA) toward the sensing region.

The team used a magnetic field in order to overcome the drawback that the biomolecules movement is slow when transport depends only on diffusion. The biomolecules labeled with superparamagnetic particles and the use of an external magnetic field enabled the movement of the biomolecules to be easily controlled and detected with an ultra-sensitive magnetic sensor.

First author Byeonghwa Lim, PhD student at DGIST, added: "We placed a spider web-shaped micro-magnetic pattern, which was designed to move the superparamagnetic particles toward the center of the biosensor, and a high-sensitivity biosensor on the platform. When a rotating magnetic field is applied to a spider web-shaped magnetic pattern, it can attract biomolecules labeled with superparamagnetic particles faster to the sensor. The speed of the movement is very fast and it can detect the subject 20 times faster than the diffusion method."

The team also succeeded in monitoring the biomolecules, conjugated to the superparamagnetic particles, at a distance from the sensing area. In addition, they found that the superparamagnetic particles not only play the role in biomolecular cargo for transportation, but also act as labels for the sensor to indicate the location of biomolecules.

The study, by Lim B et al, was published March 31, 2017, in the journal NPG Asia Materials.


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Collection and Transport System
PurSafe Plus®
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The Elecsys Dengue Ag assay is intended for the in vitro qualitative detection of dengue virus NS1 antigen in human serum and plasma (Photo courtesy of Roche)

Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes

Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.