We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... read more Featured Products: More products

Download Mobile App




Immunohistochemistry Biomarkers Used to Subtype Gastric Intestinal Metaplasia

By LabMedica International staff writers
Posted on 04 May 2022
Print article
Image: The Vectra 3 System for Quantitative Pathology Imaging (Photo courtesy of PerkinElmer)
Image: The Vectra 3 System for Quantitative Pathology Imaging (Photo courtesy of PerkinElmer)

Gastric cancer (GC) is the fifth most common and third most lethal cancer globally. Patients with GC are often asymptomatic, with presentation occurring at advanced stage, and a low 5-year survival rate in most countries. Intestinal metaplasia is considered a key pivot point in the Correa model of GC.

The Correa model describes histologically defined conditions initiated by Helicobacter pylori infection, from chronic gastritis (ChG) to atrophic gastritis, intestinal metaplasia (IM), dysplasia and finally to the intestinal type of GC. Successful H. pylori eradication treatment in the early stages of this cascade can reverse the process, but in a subset of IM patients, eradication does not prevent them from progressing to GC suggesting that IM is a key point in gastric carcinogenesis.

Gastroenterologists at the Royal Melbourne Hospital (Melbourne, Australia) and their colleagues selected CD10 and Das1 as candidate biomarkers to distinguish complete and incomplete IM glands in tissues from patients without GC (IM-GC) and patients with GC (IM + GC). H&E stained gastric IM tissue samples collected post-endoscopy/gastrectomy were subtyped at the time of collection by the in-house pathologist. Individual IM glands were subtyped as complete or incomplete with principal criteria being the presence of a brush border and gland morphology.

Immunohistochemistry (IHC) was performed on sequential 4 μm formalin-fixed, paraffin-embedded (FFPE) sections. Anti-CD10 staining was carried out using both single IHC and as part of a multiplex IHC panel. Multiplexed IHC stained sections were scanned and visualized on a VECTRA imaging system (Canfield Scientific, Parsippany, NJ, USA). Das1 staining was performed with overnight incubation of the primary antibody and slides were scanned on a VS120 slide scanner microscope and imaged using cellSens Dimension software (Olympus, Tokyo, Japan).

The scientists reported that across both cohorts CD10 stained the IM brush border and was shown to have a high sensitivity (87.5% and 94.9% in IM-GC and IM + GC patients respectively) and specificity (100.0% and 96.7% respectively). By contrast Das1 stained mainly goblet cells and the apical membrane of epithelial cells, mostly of incomplete IM glands with a low sensitivity (28.6% and 29.3% in IM-GC and IM + GC patients respectively) but high specificity (98.3% and 85.1% respectively). Whole tissue digital quantification of Das1 staining showed a significant association with incomplete IM compared to complete IM, both in IM-GC and in IM + GC patients. Additionally, complete IM in IM + GC patients exhibited significantly more Das1 staining than in IM-GC patients.

The authors concluded that overall CD10 was shown to be an outstanding biomarker for complete IM and Das1 was shown to have potential as an additional risk-associated biomarker when used in combination with digital imaging quantification. Their clinical use could lead to better patient stratification with improved targeted surveillance of IM patients, ultimately leading to prevention or early detection of GC. The study was published on April 21, 2022 in the journal BMC Gastroenterology.

Related Links:
The Royal Melbourne Hospital
Canfield Scientific
Olympus 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.