We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Single-Cell Analysis Uncovers Regulatory Program in Rare Leukemia

By LabMedica International staff writers
Posted on 18 Dec 2019
Print article
Image: Bone marrow smear from a patient with mixed phenotype acute leukemia. The marrow aspirate smear has 71% blasts by differential count, with a similar dimorphic morphology as in the peripheral blood with numerous blasts with a dimorphic morphology (Photo courtesy of Elizabeth Courville, MD).
Image: Bone marrow smear from a patient with mixed phenotype acute leukemia. The marrow aspirate smear has 71% blasts by differential count, with a similar dimorphic morphology as in the peripheral blood with numerous blasts with a dimorphic morphology (Photo courtesy of Elizabeth Courville, MD).
Identifying the causes of human diseases requires deconvolution of abnormal molecular phenotypes spanning DNA accessibility, gene expression and protein abundance. Mixed-phenotype acute leukemia exhibits features of both acute myeloid leukemia and acute lymphoblastic leukemia and, as such, is marked by features of multiple hematopoietic lineages.

Mixed phenotype acute leukemia is a very rare type of leukemia where more than one type of leukemia occurs at the same time. This can happen when a person has either: both acute lymphoblastic leukemia (ALL) blasts (cancer cells) and acute myeloblastic leukemia (AML) blasts at the same time or leukemic blasts that have features of both ALL and AML on the same cell.

Scientists at the Stanford University School of Medicine (Stanford, CA, USA) and their colleagues identified pathological molecular features of mixed-phenotype acute leukemia by first analyzing the single-cell transcriptomic and epigenetic profiles of healthy blood cells during their development. Once they established profiles of those healthy cells, they examined how the profiles of leukemic cells compared.

The team performed droplet-based cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) of more than 35,000 healthy bone marrow and peripheral blood mononuclear cells. With this, they generated multi-omic maps of hematopoiesis. They validated the maps and found them to reflect the essential phenotypic, transcriptomic, and epigenetic features of blood development. They developed a framework to analyze signatures of hematopoietic development at the single-cell level. With this, they then sought to examine how those signatures differed between healthy and leukemic cells.

The team assayed thousands of single cells from mixed-phenotype acute leukemia (MPAL) samples using both CITE-seq and scATAC-seq and identified 4,616 genes that were differentially upregulated and 72,196 significantly upregulated peaks. They projected these single-cell analyses onto their hematopoietic maps to find epigenetic and gene expression diversity and grouped the cells into broad hematopoietic development compartments. They focused on the transcription factors that might regulate these leukemia programs and found that RUNX1 motifs were enriched among certain MPAL subsets.

RUNX1, they noted, is a frequently mutated gene in hematological malignancies, and they uncovered 732 genes regulated by a RUNX1-containing distal element in at least two MPAL subsets. Additionally, CD69 which has been linked to lymphocyte activation through JAK-STAT signaling and lymphocyte retention in lymphoid organs was differentially upregulated in nearly every MPAL subset. The authors concluded that their results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples. The study was published on December 2, 2019 in the journal Nature Biotechnology.

Related Links:
Stanford University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.