We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




LC-MS/MS Assay Directly Detects Urinary Bacteria

By LabMedica International staff writers
Posted on 30 Oct 2019
Fast identification of microbial species in clinical samples is essential to provide an appropriate anti-biotherapy to the patient and reduce the prescription of broad-spectrum antimicrobials leading to anti-bioresistances.

Matrix-assisted laser desorption/ionization – time of flight-mass spectrometry (MALDI-TOF-MS) technology has become a tool of choice for microbial identification, but has several drawbacks as it requires a long step of bacterial culture prior to analysis (24 hours), has a low specificity and is not quantitative.

Scientists at the Centre Hospitalier Universitaire de Québec (Québec, QC, Canada) and their colleagues developed a new strategy for identifying bacterial species in urine using specific liquid chromatography–mass spectrometry (LC-MS/MS) peptidic signatures. More...
The team combined several mass spectrometry techniques to develop their assay, starting with shotgun mass spectrometry assays of pure bacterial colonies to develop mass spectral libraries for use in subsequent data-independent acquisition (DIA) assays. They used those DIA assays to detect bacterial peptides in urine samples, quantifying 31,000 peptides from 190 samples containing 15 bacterial species that cause 84% of all urinary tract infections (UTIs).

The sceintists tested these targeted assays in urine samples inoculated with the four most commonly found causes of UTIs (Escherichia coli, Streptococcus agalactiae, Enterococcus faecalis, and Klebsiella pneumonia) at five different concentrations running the experiments with 90-minute LC gradients on a Thermo Fisher Scientific Orbitrap Fusion. They also ran the samples on a Thermo Fisher Q Exactive HF-X using a 30-minute LC gradient. The assays showed 100% accuracy in all inoculations at concentrations above the standard clinical threshold and 97% accuracy overall.

The scientists also compared their direct detection approach to a standard MALDI-TOF workflow, finding that in a set of 27 patients, the two methods agreed on 19 of the samples (seven of which were not infected and nine of which were infected with E. coli), while disagreeing on eight samples, seven of which the MALDI-TOF method identified as infected while the LC-MS/MS approach identified as not infected, though these seven were identified by the MALDI-TOF at the genus, but not species level.

The authors concluded that their work demonstrates the efficiency of the method for the rapid and specific identification of the bacterial species causing UTI and could be extended in the future to other biological specimens and to bacteria having specific virulence or resistance factors. The study was published on October 4, 2019, in the journal Molecular & Cellular Proteomics.

Related Links:
Centre Hospitalier Universitaire de Québec


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.