We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sensors Developed to Detect Disease Markers in Breath

By LabMedica International staff writers
Posted on 30 May 2017
A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building's air could soon be the basis of portable, disposable sensor devices. More...
A device that monitors ammonia in breath, a sign of kidney failure, has been demonstrated.

Different groups of scientists have tried using organic semiconductors for gas sensing, but the materials were not sensitive enough to detect trace levels of disease markers in breath. One group has realized that the reactive sites were not on the surface of the plastic film, but buried inside it.

Bioengineers at the University of Illinois Urbana-Champaign focused on ammonia as a marker for kidney failure. Monitoring the change in ammonia concentration could give a patient an early warning sign to call their doctor for a kidney function test. The material they chose is highly reactive to ammonia but not to other compounds in breath, but by changing the composition of the sensor, they could create devices that are tuned to other compounds. For example, the scientists have created an ultrasensitive environmental monitor for formaldehyde, a common indoor pollutant in new or refurbished buildings.

By introducing tunable nanopores (50–700 nm) to organic semiconductor thin films enhances their reactivity with volatile organic compounds by up to an order of magnitude, while the surface-area-to-volume ratio is almost unchanged. Mechanistic investigations show that nanopores grant direct access to the highly reactive sites otherwise buried in the conductive channel of the transistor. The high reactivity of nanoporous organic field-effect transistors leads to unprecedented ultrasensitive ultrafast, selective chemical sensing below the 1 ppb level on a hundred millisecond time scale, enabling a wide range of health applications.

Ying Diao, PhD, an assistant professor and lead investigator said, “We would like to be able to detect multiple compounds at once, like a chemical fingerprint. It's useful because in disease conditions, multiple markers will usually change concentration at once. By mapping out the chemical fingerprints and how they change, we can more accurately point to signs of potential health issues.” The study was published on May 2, 2017, in the journal Advanced Functional Materials.


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.