We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gastric Cancer Detected Through Exhaled Breath

By LabMedica International staff writers
Posted on 27 Apr 2015
A new type of technology that senses minute changes in the levels of particular compounds in exhaled breath accurately identifies high risk changes which herald the development of stomach cancer.

The technology, known as nanoarray analysis, could be used not only to test for the presence of stomach cancer, but also to monitor those at high risk of subsequently developing the disease as stomach cancer rarely causes symptoms in its early stages, making it hard to detect.

Scientists at the Israel Institute of Technology (Haifa, Israel;) and their colleagues collected 968 breath samples from 484 patients, including 99 with gastric cancer, for two different analyses. More...
The participants had fasted for 12 hours prior to the breath samples being taken and had refrained from smoking for at least three hours beforehand. In addition, subjects were tested for infection with Helicobacter pylori infection, an established risk factor for stomach cancer, and their smoking and drinking habits were analyzed.

The first sample was analyzed by gas chromatography linked to mass spectrometry (GCMS) and the second by cross-reactive nanoarrays combined with pattern recognition. The GCMS analysis that measures the levels of volatile organic compounds (VOCs) identified 130 VOCs in participants' exhaled breath. On comparing the breath samples of participants with stomach cancer with those of participants who had changes in VOC levels considered to be precancerous, the scientists identified eight distinctive "breath-print" compositions.

On applying the nanoarray technique to the breath samples, the team found it was effectively able to distinguish between breath-print compositions in participants with stomach cancer and those at low and high risk of the condition. The method achieved 73% sensitivity, 98% specificity and 92% accuracy, according to the results. While GCMS technology is unable to be used for stomach cancer screening due to its high cost and complexity, the scientists say nanoarray analysis may be a highly accurate and cheaper alternative. The study was published on April 13, 2015, in the journal Gut.

Related Links:

Israel Institute of Technology



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
Clinical Chemistry System
P780
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.