Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




A Discrete Gene Signature Is a Diagnostic and Predictive Biomarker for Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 15 Jul 2013
A genetic signature comprising two messenger RNA molecules that encode immune system proteins and one noncoding RNA molecule that participates in protein production has been shown to be diagnostic and prognostic of acute cellular rejection in kidney transplants.

The standard test for the diagnosis of acute rejection in kidney transplants is the renal biopsy. More...
However, biopsy samples, in addition to being invasive with risk of infection, may not give the physician an accurate impression of the overall state of the kidney, since biopsy specimens are small and may not contain any injured tissue.

Investigators at the [US] National Institutes of Health (Bethesda, MD, USA) and colleagues at Weill Cornell Medical College (New York, NY, USA) and the University of Pennsylvania (Philadelphia, USA) sought a noninvasive test that would accurately detect or predict kidney transplant rejection.

To this end, they collected 4,300 urine specimens from 485 kidney-graft recipients from day three through month 12 after transplantation. Messenger RNA (mRNA) levels were measured in urinary cells taken from the samples and correlated with allograft-rejection status with the use of logistic regression.

The investigators found that a three-gene signature representing 18S ribosomal RNA (rRNA), CD3epsilon mRNA, and interferon-inducible protein 10 (IP-10) mRNA discriminated between biopsy specimens showing acute cellular rejection and those not showing rejection. The signature distinguished acute cellular rejection from acute antibody-mediated rejection and borderline rejection. It also distinguished patients who received anti-interleukin-2 receptor antibodies from those who received T-cell-depleting antibodies and was diagnostic of acute cellular rejection in both groups. Urinary tract infection did not affect the signature.

Levels of the signature RNAs in repeated urine samples remained below the diagnostic threshold for acute cellular rejection in the group of patients with no rejection, but in the group with rejection, there was a sharp rise during the weeks before a biopsy revealed signs of rejection.

"The test described in this study may lead to better, more personalized care for kidney transplant recipients by reducing the need for biopsies and enabling physicians to tailor immunosuppressive therapy to individual patients," said contributing author Dr. Nancy Bridges, transplantation branch chief at the [US] National Institutes of Health. "The National Institutes of Health-funded Clinical Trials in Organ Transplantation (CTOT) cooperative research consortium provided the infrastructure and collaborative environment needed to conduct the large, rigorous, multicenter study that established the efficacy of this biomarker-based test."

The study was published in the July 4, 2013, issue of the New England Journal of Medicine.

Related Links:

National Institutes of Health
Weill Cornell Medical College
University of Pennsylvania



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.