We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stable Isotope Labeling Detects Mutated Viral Strains

By LabMedica International staff writers
Posted on 31 May 2012
A bank of molecular signatures has been constructed that will help identify the severity of virus infection from characteristic changes seen in cells.

Changes in lung cells infected with swine flu from the 2009 outbreak compared with seasonal flu have been investigated using a technique called stable isotope labeling by amino acids in cell culture (SILAC) to measure and compare thousands of different proteins in a sample. More...


A team of scientists at the University of Leeds (UK) working with others from the Health Protection Agency (Porton Down, UK) used the SILAC alongside mass spectrometry to identify the proteins most affected by viral infection and used these as molecular signatures to provide the “barcode” of disease.

The study revealed how several processes in the cell were affected by the virus, with most changes seen in proteins involved in cell replication. A total of 1,427 cellular proteins were identified by two or more peptides. Studies using SILAC-based quantitative proteomics vary in the cut off value used to analyze increases and decreases in the abundance of proteins. The abundance of proteins involved in mediating antiviral responses was changed in Influenza A Virus infected cells and several integrins were decreased in abundance in virus-infected cells. Taken together, both quantitative proteomics and transcriptomic approaches can be used to identify potential cellular proteins whose functions in the virus life cycle could be targeted for chemotherapeutic intervention.

Dr John Barr, one of the senior authors, said, "Swine flu affects the lungs in a similar way to seasonal flu and this was reflected in the barcodes we found for each. Using this test might have been a way to identify how lethal the 2009 swine flu pandemic was going to be, lessening worldwide panic. Our next step is to test more lethal strains of flu, such as bird flu, to see how the barcodes differ. Flu virus frequently mutates, resulting in new strains, which may be life threatening and become pandemic. If we can test new strains using our method, we can determine their potential impact on health by comparing their barcode of disease to those of viruses already studied." The study was published on May 14, 2012, in the journal Proteomics.

Related Links:
University of Leeds
Health Protection Agency


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hematology Analyzer
Medonic M32B
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.