We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




CRISPR-based Assay Platform Detects Multiple Viruses and COVID-19 Variants

By LabMedica International staff writers
Posted on 17 Feb 2022

A cost-effective virus and variant detection platform has been developed that can test for up to 21 viruses, including SARS-CoV-2, other coronaviruses, and both influenza strains. More...

Investigators at Broad Institute of MIT and Harvard University (Cambridge, MA, USA) and Princeton University (Princeton, NJ, USA) have described the development of the diagnositic platform known as mCARMEN (microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids). The mCARMEN platform is an upgraded and refined version of their CARMEN system, which depended on nanoliter droplets containing CRISPR/Cas 13-based nucleic acid detection reagents.

Recent computational efforts to identify new CRISPR systems uncovered a novel type of RNA targeting enzyme, Cas13. The diverse Cas13 family contains at least four known subtypes, including Cas13a (formerly C2c2), Cas13b, Cas13c, and Cas13d. Cas13a was shown to bind and cleave RNA, protecting bacteria from RNA phages and serving as a powerful platform for RNA manipulation. It was suggested that Cas13a could function as part of a versatile, RNA-guided RNA-targeting CRISPR/Cas system holding great potential for precise, robust, and scalable RNA-guided RNA-targeting applications.

The original CARMEN platform required custom equipment, involved a manually intensive eight to 10-hour workflow, and offered throughput that was too low for the requirements of a pandemic. Therefore, the investigators modified the CARMEN procedure to work on the Fluidigm (San Francisco, CA, USA) microfluidics and instrumentation platform, making it easier to run and cutting the run time in half. The investigators also streamlined the workflow for greater sensitivity, so that it could detect pathogens in samples with less genetic material. Furthermore, by using CRISPR-based enzymes Cas12 and Cas13 in combination, mCARMEN could not only detect the presence of a virus, but also measured the amount of virus in a sample.

To complement the mCARMEN protocol, the investigators developed a respiratory virus panel (RVP) to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. They further developed an mCARMEN panel to enable identification of six SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens. Finally, they implemented a combined Cas13 and Cas12 approach that enabled quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples.

"The COVID-19 pandemic shows us that we need more testing, more often, particularly early on in a pandemic," said senior author Dr. Cameron Myhrvold, assistant professor of molecular biology at Princeton University. "COVID-19 shows us that challenging viruses will keep emerging, so we have to keep looking for them and come up with better ways of doing that."

The mCARMEN method was described in the February 7, 2022, online edition of the journal Nature Medicine.

Related Links:
Broad Institute of MIT and Harvard University 
Princeton University
Fluidigm 

 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.