Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




A Novel Nanowell Array Sensor for POC Measurement of Stress Hormones

By LabMedica International staff writers
Posted on 13 Jul 2021
Researchers have constructed a microchip "nanosensor" to measure stress hormones such as cortisol in a dedicated nanowell array, which does not require molecular labels or washing steps.

Investigators at Rutgers University (New Brunswick, NJ, USA) designed a nanowell device based on two electrode probes, which were integrated within the nanowell structure. More...
The electrodes were stacked vertically above one another to minimize the electrode spacing. The electrodes were separated by a 40-nanometer insulator layer within the nanowells, meaning that the counter electrodes were actually integrated into the nanowell structure. This sensor geometry limited the exposed surface area of the electrodes, and, as a result, the amount of probe antibody molecules inside the nanowells, while also enhancing the sensitivity by focusing the electric field into the nanowells.

This functional geometry permitted rapid and low volume (less than five microliters) sensing through activation of the wells with antibodies and monitoring of real-time binding events. A 28-well plate biochip was built on a glass substrate by sequential deposition, patterning, and etching steps to create a stacked nanowell array sensor with an electrode gap of 40 nanometers. Sensor response for cortisol concentrations between one and 15 micrograms per deciliter in buffer solution was recorded, and a limit of detection of 0.5 micrograms per deciliter was achieved.

The nanowell array sensor was used to analyze 65 serum samples from patients with rheumatoid arthritis, and the results were compared to those obtained from the standard enzyme-linked immunosorbent assay (ELISA). The results confirmed that nanowell array sensors could be a promising platform for point-of-care testing, where real-time, laboratory-quality diagnostic results are essential.

"The use of nanosensors allowed us to detect cortisol molecules directly without the need for any other molecules or particles to act as labels," said first author Dr. Reza Mahmoodi, a postdoctoral researcher at Rutgers University. "Our new sensor produces an accurate and reliable response that allows a continuous readout of cortisol levels for real-time analysis. It has great potential to be adapted to non-invasive cortisol measurement in other fluids such as saliva and urine. The fact that molecular labels are not required eliminates the need for large bulky instruments like optical microscopes and plate readers, making the readout instrumentation something you can measure ultimately in a small pocket-sized box or even fit onto a wristband one day."

The nanowell array sensor was described in the June 30, 2021, online edition of the journal Science Advances.

Related Links:
Rutgers University


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Specimen Radiography System
TrueView 200 Pro
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.